
VMIVME-2540
Intelligent Counter/Controller
Product Manual
12090 South Memorial Parkway
Huntsville, Alabama 35803-3308, USA

(256) 880-0444  �  (800) 322-3616  �  Fax: (256) 882-0859

500-002540-000 Rev. N



12090 South Memorial Parkway
Huntsville, Alabama 35803-3308, USA

(256) 880-0444  �  (800) 322-3616  �  Fax: (256) 882-0859



© Copyright 2001. The information in this document has been carefully checked and is believed to be entirely reliable.
While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, VMIC assumes no
responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

VMIC reserves the right to make any changes, without notice, to this or any of VMIC’s products to improve reliability,
performance, function, or design.

VMIC does not assume any liability arising out of the application or use of any product or circuit described herein; nor
does VMIC convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to VMIC’s Standard Conditions of Sale.

AMXbus, BITMODULE, COSMODULE, DMAbus, IOMax, IOWorks Foundation, IOWorks Manager, IOWorks Server,
MAGICWARE, MEGAMODULE, PLC ACCELERATOR (ACCELERATION), Quick Link, RTnet, Soft Logic Link, SRTbus,
TESTCAL, “The Next Generation PLC”, The PLC Connection, TURBOMODULE, UCLIO, UIOD, UPLC, Visual Soft Logic
Control(ler), VMEaccess, VMEbus Access, VMEmanager, VMEmonitor, VMEnet, VMEnet II, and VMEprobe are
trademarks and  The I/O Experts, The I/O Systems Experts, The Soft Logic Experts, and The Total Solutions Provider are
service marks of VMIC.

COPYRIGHT AND TRADEMARKS

VMIC
All Rights Reserved

This document shall not be duplicated, nor its contents used for any 
purpose, unless granted express written permission from VMIC.

The I/O man figure, IOWorks, IOWorks man figure, UIOC, Visual IOWorks and the VMIC logo are registered
trademarks of VMIC. 

ActiveX, Microsoft, Microsoft Access, MS-DOS, Visual Basic, Visual C++, Win32, Windows, Windows NT, and XENIX
are registered trademarks of Microsoft Corporation.

Celeron and MMX are trademarks, and Intel and Pentium are registered trademarks of Intel Corporation.

PICMG and CompactPCI are registered trademarks of PCI Industrial Computer Manufacturers’ Group.

Other registered trademarks are the property of their respective owners.

(I/O man figure) (IOWorks man figure)



12090 South Memorial Parkway
Huntsville, Alabama 35803-3308, USA

(256) 880-0444  �  (800) 322-3616  �  Fax: (256) 882-0859



Table of Contents
List of Figures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Disclaimer: Notice About Equivalent Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Reference Material List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Physical Description and Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Safety Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Ground the System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Do Not Operate in an Explosive Atmosphere  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Keep Away from Live Circuits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Do Not Service or Adjust Alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Do Not Substitute Parts or Modify System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Dangerous Procedure Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Safety Symbols Used in This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 1 - Theory of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

System Timing Controller Front-End Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

RS-422 Line Driver and Receiver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Synchronizer and Conditioning Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

AM9513A System Timing Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

QPM Direction Change Interrupt Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I/O Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

68HC000 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Decode and Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Local Bus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5



VMIVME-2540 Intelligent Counter/Controller
Local Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Local I/O Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Local Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

EPROM Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Static RAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Local Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

STC Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VMEbus Command Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VMEbus Slave Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

VMEbus Slave Address Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Command Status Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

VMEbus Interrupter Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2 - Configuration and Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Unpacking Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

DIP Switch Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Jumper Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

I/O Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Recommended Discrete Wire Connectors and Terminal Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

TTL/Single-Ended Input Signal Compatibility Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 3 - Programming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

VMEbus Interface Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Board ID/Configuration Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Firmware Revision Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Command Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Command Status Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Command Status Interrupt Request Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Command Status Interrupt Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Channel ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Continuous/Discrete Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Measurement Ready Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Measurement Channel ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Channel Measurement Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Channel Control Block Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Timer Channel Control Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

VMIVME-2540 Continuous/Discrete Flag Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VMIVME-2540 Measurement Data Valid Flags Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6



Table of Contents
VMIVME-2540 Firmware Release Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

VMIVME-2540 Daignostic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Command Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Programming Using the Command Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Command Status Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Input Modes of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Output Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Timing Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Channel Control Blocks Common Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Operation Mode Selection Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Format of the Operation Mode Select Flag:69

Operational Mode Select Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Command Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Initialization and Synchronization Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Channel Input/Measurement Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Integer 16-bit Event Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Integer 32-bit Event Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Period Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Frequency Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Pulse-Width Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Quadrature Position Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Integer Quadrature Position Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

16-bit Integer Period Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

32-bit Integer Period Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

32-bit Integer Pulse-Width Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Group Acquisition Mode (Integer QPM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

16-bit Integer Pulse Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Delayed Event Timer with VMEbus Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Programming Strategies for Input Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Continuous Data Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Discrete Data Acquisition Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Channel Output/Waveform Generation Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

16-bit Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

32-bit Frequency Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Period/Pulse-Width Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Frequency/Duty Cycle Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Pulse Sequence Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7



VMIVME-2540 Intelligent Counter/Controller
Programmed Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Quadrature Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Programming Strategies for Output Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Timer Operation Command Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Timer/Periodic Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Auxiliary Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix A - Example Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   117

Terminal Output of Program gs.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Programming Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8



List of Figures
Figure 1-1 VMIVME-2540 Intelligent Counter/Controller   ...........................................................................     21

Figure 1-2 VMIVME-2540 System Timing Controller   .................................................................................    22

Figure 1-3 QPM Direction Change Interrupt Logic   .....................................................................................    23

Figure 1-4 Local Bus Arbitration   .................................................................................................................    25

Figure 1-5 Interrupt Controller for STC Outputs   .........................................................................................    32

Figure 1-6 VMEbus Slave Address Decode   ...............................................................................................    34

Figure 1-7 Intelligent Interface Interrupter Module   .....................................................................................    35

Figure 2-1 VMIVME-2540 DIP Switches and Jumper Options   ..................................................................     39

Figure 2-2 Example DIP Switch Settings   ...................................................................................................    40

Figure 2-3 P3/P4 Pinout Layout   .................................................................................................................    44

Figure 2-4 Typical RS-422-Compatible Signal Connections   ......................................................................    47

Figure 2-5 Typical TTL-Compatible Signal Connections   ............................................................................    47
9



VMIVME-2540 Intelligent Counter/Controller
10



List of Tables
Table 1-1 VMIVME-2540 Local CPU Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 1-2 VMIVME-2540 Local I/O Address Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 2-1 RS-422 Receiver Termination Jumper Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 2-2 Configuration Jumpers E50 and E51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 2-3 VMEbus Access Select Jumpers E52, E53 and E54  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 2-4 I/O Connector P3 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 2-5 I/O Connector P4 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 2-6 Recommended Discrete Wire Connectors and Accessories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 2-7 TTL/Single-Ended Input Signal Compatibility Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3-1 VMIVME-2540 VMEbus I/F Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 3-2 Board ID/Configuration (Offset $0000)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3-3 VMIVME-2540 ID/Configuration Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3-4 Firmware Revision Level (Offset $0002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 3-5 Command Code (Offset $0004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 3-6 Command Status Code (Offset $0006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3-7 Command Status Interrupt Request Level (Offset $0008)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3-8 Command Status Interrupt Vector (Offset $0009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 3-9 Channel ID (Offset $000A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 3-10 Continuous/Discrete Flag (Offset $000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 3-11 Measurement Ready Flag (Offset $000C)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 3-12 Measurement Channel ID (Offset $000E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 3-13 Channel Measurement Status (Offset $000F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 3-14 Channel Control Block Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 3-15 Timer Channel Control Block Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 3-16 VMIVME-2540 Continuous/Discrete Flag Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3-17 VMIVME-2540 Measurement Data Valid Flags Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3-18 VMIVME-2540 Firmware Release Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11



VMIVME-2540 Intelligent Counter/Controller
Table 3-19 VMIVME-2540 Diagnostic Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 3-20 VMIVME-2540 Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 3-21 VMIVME-2540 Status Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 3-22 Front Panel External Clock, Gate, and Output Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 3-23 Typical CCB Format/Common Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 3-24 Gate/Edge Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 3-25 Clock Period (Time Base) Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 3-26 Operational Mode Select Flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 3-27 16-bit Event Counter Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 3-28 32-bit Event Counter Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 3-29 Period Measurement Channel Control Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 3-30 Frequency Measurement Channel Control Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 3-31 Pulse-Width Measurement Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 3-32 QPM Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 3-33 QPM Channel Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 3-34 Integer QPM Channel Control Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 3-35 Integer Period Measurement Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 3-36 32-bit Integer Period Measurement Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 3-37 32-bit Pulse-Width Measurement Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 3-38 16-bit Integer Pulse-Width Measurement Channel Control Block  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 3-39 Delayed Event Timer CCB Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 3-40 16-bit Frequency Divider Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 3-41 32-bit Frequency Divider Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 3-42 Period/Pulse-Width Generation Channel Control Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 3-43 Frequency/Duty Cycle Generation Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 3-44 Pulse Sequence CCB Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 3-45 Programmed Output CCB Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 3-46 Quadrature Control Output Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 3-47 Timer/Periodic Interrupt Channel Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 3-48 Block Move Diagnostic Buffer Entries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 3-49 Diagnostic Buffer Entry for Execute Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 3-50 VMIVME-2540 Configuration Using Example Set 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 3-51 VMIVME-2540 Configuration Using Example Set 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Table 3-52 Wire Connections - Example Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Table 3-53 Wire Connections - Example Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
12



Overview
Contents

Reference Material List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Safety Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Safety Symbols Used in This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Introduction

The VMIVME-2540 is an intelligent digital input/output board with a VMEbus slave 
interface which optionally provides 4, 8, 16, or 24 channels of digital signal 
measurement and signal generation capability. These measurement and signal output 
functions are implemented by an array of AM9513A system timing controllers (STC) 
and associated interface logic. An on-board VMIVME-2540 local CPU (68HC000 
Microprocessor) relieves the user from the task of programming the system timing 
controllers directly by providing a command-driven user interface to perform the 
board functions. The user configures measurement, timing and output functions for 
each channel through a simple, memory-mapped interface consisting of commands, 
command status, parameters, and return measurements.

Each channel of the VMIVME-2540 consists of a 16-bit counter with clock and gate 
inputs and a digital waveform output. The modes of operation for the unit are:

• Event counter with programmable limit count and optional gate
• Frequency divider
• Event-triggered interrupt with delay
• Timer/periodic VMEbus interrupt
• Period/frequency/pulse-width measurement
• Square wave/pulse train generation
• Quadrature position measurement
• Quadrature position control

Channels may be grouped in pairs for 32-bit extended precision and extended 
measurement modes. The channels are all buffered at the VMIVME-2540 front panel 
13



VMIVME-2540 Intelligent Counter/Controller
with RS-422 line receivers and drivers. Support for single-ended TTL inputs is 
provided by an on-board TTL threshold voltage which may be connected externally 
to the inverting input of the RS-422 line receiver.

The VMEbus interface of the VMIVME-2540 consists of a 64 Kbyte static RAM 
memory, a command status buffer, and two interrupter modules. The 64 Kbyte 
memory, shared between the VMEbus and the VMIVME-2540 local CPU, is used to 
exchange command, command status, and parametric and measurement data. The 
command status buffer overlays a one word memory location with no local bus 
arbitration for VMEbus access to the status data. VMEbus access to the command 
status buffer occurs with minimal delay. The interrupter modules on the 
VMIVME-2540 may assert up to two VMEbus interrupts simultaneously on interrupt 
levels IRQ1 through IRQ7 with independent 8-bit vectors.

Disclaimer: Notice About Equivalent Parts

"In the sections which follow, reference to specific part types do not guarantee the 
usage of that part in the final assembly. Equivalent Integrated Circuits may be 
substituted in the final assembly without notification."
14



Overview
Reference Material List

Refer to The VMEbus Specification for a detailed explanation of the VMEbus. The 
VMEbus Specification is available from the following source:

VITA
VMEbus International Trade Association
7825 East Gelding Dr. Suite 104
Scottsdale, AZ 85260-3415
(602) 951-8866
FAX: (602) 951-0720
Email: info@vita.com

Physical Description and Specifications 

Refer to 800-002540-000 specification available from VMIC.

VMIC
12090 South Memorial Pkwy.
Huntsville, AL 35803-3308, USA
(256) 880-0444
(800) 322-3616
FAX: (256) 882-0859
www.vmic.com
15



VMIVME-2540 Intelligent Counter/Controller
Safety Summary

The following general safety precautions must be observed during all phases of the 
operation, service, and repair of this product.  Failure to comply with these 
precautions or with specific warnings elsewhere in this manual violates safety 
standards of design, manufacture, and intended use of this product.  

VMIC assumes no liability for the customer’s failure to comply with these 
requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an 
electrical ground.  A three-conductor AC power cable should be used.  The power 
cable must either be plugged into an approved three-contact electrical outlet or used 
with a three-contact to two-contact adapter with the grounding wire (green) firmly 
connected to an electrical ground  (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes.  Operation of 
any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers.  Component replacement and 
internal adjustments must be made by qualified maintenance personnel.  Do not 
replace components with power cable connected.  Under certain conditions, 
dangerous voltages may exist even with the power cable removed.  To avoid injuries, 
always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of 
rendering first aid and resuscitation, is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute 
parts or perform any unauthorized modification to the product.  Return the product 
to VMIC for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede only potentially dangerous procedures 
throughout this manual.  Instructions contained in the warnings must be followed.

STOP: Dangerous voltages, capable of causing death, are present in this system.  Use 
extreme caution when handling, testing, and adjusting.
16



Overview
Safety Symbols Used in This Manual

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 
1,000 V are so marked).

Protective conductor terminal.  For protection against electrical shock in case of a 
fault.  Used with field wiring terminals to indicate the terminal which must be 
connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal.  Used for a signal common, as 
well as providing protection against electrical shock in case of a fault.  Before 
operating the equipment, terminal marked with this symbol must be connected to 
ground in the manner described in the installation (operation) manual.

Frame or chassis terminal.  A connection to the frame (chassis) of the equipment 
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

STOP: Informs the operator that a practice or procedure should not be performed. 
Actions could result in injury or death to personnel or could result in damage to or 
destruction of part or all of the system.

WARNING: Denotes a hazard.  It calls attention to a procedure, a practice, a 
condition, which, if not correctly performed or adhered to, could result in injury or 
death to personnel.

CAUTION: Denotes a hazard.  It calls attention to an operating procedure, a practice, 
or a condition, which, if not correctly performed or adhered to, could result in damage 
to or destruction of part or all of the system.

NOTE: Denotes important information.  It calls attention to a procedure, a practice, a 
condition or the like, which is essential to highlight.

OR

OR
17



VMIVME-2540 Intelligent Counter/Controller
18



CHAPTER

1

Theory of Operation
Contents

I/O Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Local Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Local Interrupt Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VMEbus Slave Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
VMEbus Interrupter Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Introduction

Functional Description

A block diagram of the VMIVME-2540 Intelligent Counter/Controller is shown in 
Figure 1-1 on page 21. The functions of the board may be divided into five groups:

• System timing controller front-end logic
• VMIVME-2540 local CPU interrupt controller

• VMIVME-2540 local CPU/memory/interface support logic
• VMEbus Slave DTB Interface
• VMEbus Interrupter Modules

 Each of these groups will be discussed in more detail in the following sections.

System Timing Controller Front-End Logic

The system timing controller front-end logic consists of RS-422 buffers, synchronizing 
and conditioning logic, quadrature position measurement logic (QPM), and the 
AM9513A system timing controller, as shown in Figure 1-2 on page 22. 

RS-422 Line Driver and Receiver

The RS-422 line drivers used on the VMIVME-2540 have a specified current sink/
source value of ±60 mA and 2.0 V minimum differential output voltage. The RS-422 
line receivers have a differential input voltage ±25 V maximum. Each input is 
19



     1 VMIVME-2540 Intelligent Counter/Controller
optionally terminated with a 120 Ohm resistor (See “Jumper Options” on page 40). 
TTL input signal compatibility is supported by disconnecting the termination resistor, 
connecting TTL compatibility voltage (VTTL) at the P3 and P4 I/O connectors to the 
inverting input of the RS-422 line receiver, and driving the noninverting input of the 
RS-422 line receiver with the TTL signal. The on-board threshold voltage source is a 
regulated source with output current 100 mA maximum and output voltage 1.4 V 
nominal. Refer to “Jumper Options” on page 40 and “TTL/Single-Ended Input Signal 
Compatibility Configuration” on page 46 for more information about TTL 
applications. 

Synchronizer and Conditioning Logic

Each group of four clock inputs to the VMIVME-2540 are synchronized to the 5 MHz 
STC clock by octal registers. The synchronized clock signals feed into the source-gate 
conditioning logic, implemented in a programmable logic device (PLD). Each group 
of four gate inputs to the VMIVME-2540 are data inputs to D-flip-flop (DFF) 
macrocells in the source-gate conditioning logic with the DFF macrocells clocked by 
the corresponding synchronous clock signal. Therefore, the gate inputs to the 
AM9513A are guaranteed to meet setup and hold requirements relative to the 
corresponding synchronous clock signal and the 5 MHz STC clock.

This conditioning logic is mode dependent. There is a quadrature position 
measurement (QPM) mode register bit which corresponds to each pair of adjacent 
even/odd pair channels. When a mode register bit is zero (nonquadrature position 
measurement mode), the two synchronous source signals pass on directly to the 
AM9513A system timing controller. When a mode register bit is one, the two 
synchronized clock sources pass through edge-detection logic which creates a 100 ns 
pulse for every source edge. The quadrature clock inputs are analyzed for direction, 
and this direction signal selects which input to the AM9513A STC receives an edge 
pulse: for 16-bit quadrature position measurement, even channel numbers may be 
considered clockwise, and odd channel numbers considered counterclockwise.
20



1

Figure 1-1  VMIVME-2540 Intelligent Counter/Controller 

IN
GATE

OUT

4 4 4

STC
I/F No.1

IN
GATE

OUT

4 4 4

STC
I/F No.2

IN
GATE

OUT

4 4 4

STC
I/F No.3

IN
GATE

OUT

4 4 4

STC
I/F No.4

IN
GATE

OUT

4 4 4

STC
I/F No.5

IN
GATE

OUT

4 4 4

STC
I/F No.6

I/O Data Bus

128 k
SRAM

64 k
EPROM

Transceiver

CPU Local Bus

DIN 96-Pin Connector DIN 96-Pin Connector

STC
Status

30 MHz
Clock
Driver

5 MHz
STC

Clock

15 MHz

68HC000
I/O Processor

Local
Interrupt
Control

STC
Interrupts
User
Interrupts

VMEbus
Interrupt
Modules

VMEbus
Interface

VMEbus
21



     1 VMIVME-2540 Intelligent Counter/Controller
Figure 1-2  VMIVME-2540 System Timing Controller 

The direction signal corresponding to each pair of even/odd channels is output from 
the source-gate conditioning logic to a latch (for the VMIVME-2540 local CPU to read) 
and to the QPM direction change interrupt logic. The QPM direction change logic will 
be discussed in a later section.

AM9513A System Timing Controller

The counting, timing, and waveform functions of the VMIVME-2540 are all controlled 
by the AM9513A STC. Each system timing controller has five very versatile 16-bit 
counter logic groups. Each counter logic group consists of a 16-bit counter, 16-bit load 
register, 16-bit hold register, and 16-bit counter mode register. In addition, counter 
logic groups one and two in the AM9513A have a 16-bit comparator and a 16-bit 
alarm register. Each 16-bit counter has programmable clocks and gate inputs from a 
number of sources, including the five clock and five gate inputs. Each counter logic 
group has a programmable output which may be configured to be inactive (high or 
low), terminal count (single clock cycle), or terminal count toggle (square wave). 
Counter logic groups may be cascaded to create higher precision 32-bit counters.

Of the five counter logic groups in the AM9513A, the VMIVME-2540 uses counters 
one through four to process the conditioned source and gate signals, while the fifth 
counter is used only for generating a periodic or delayed interrupts using the internal 
5 MHz timebase. The internal timebase consists of a divider chain with four 4-bit 

RS-422
Line
RX

RS-422
Line
RX

RS-422
Line
TX

CLK 4

4Gate

Output 4

4 4

Octal
DF/F
Dual
Sync Source/

Gate
Condition

Logic

4

4QSRC

4QGate

AM9513A
System
Timing

Controller

Direction
Change
Detector

Clock
Generation

Logic

30 MHz
OSC

Interrupt
Control
Logic

68000

CPU

4TC

TMR

DIRINT
2

DIR

DIR
Latch

Mode Register

IPL(2:0)

15 MHz CPUCLK

5 MHz

QPM Mode Control

Data Bus
22



1

binary/BCD counters, providing a total of five clock sources for any of the counter 
logic groups. These five timebase frequency sources are used by the VMIVME-2540 to 
measure period and pulse width using one of five available clock frequencies (200 ns 
to 2 ms). Refer to the AM9513A Technical Manual (1990 rev.) or the 1987 AMD MOS 
Microprocessor and Peripherals Handbook for more application information on the 
system timing controller.

QPM Direction Change Interrupt Logic

The quadrature clock signals are synchronized to the 5 MHz STC clock by an octal 
register, and then the direction is detected in the source-gate conditioning logic. The 
direction signal goes to the QPM direction change interrupt logic, shown in     
Figure 1-3 below. The VMIVME-2540 local CPU uses the QPM direction change 
interrupt to interrogate the direction latch and record quadrature position profiles in 
VMEbus-accessible memory. The quadrature position measurement direction change 
interrupt logic is implemented using programmable logic.

Figure 1-3  QPM Direction Change Interrupt Logic

D Q

Q

D Q

Q

D Q

Q

CLK

DIR

IACK*

DIRINT*
23



     1 VMIVME-2540 Intelligent Counter/Controller
I/O Processor

68HC000 CPU

The on-board intelligence of the VMIVME-2540 is provided by a 68HC000 
microprocessor with a 15 MHz CPU clock. The HCMOS CPU has external 16-bit data/
24-bit address buses, internal 32-bit data paths, and is a complex instruction set 
computer (CISC). Refer to Motorola M68000 User’s Manual, 7th edition for more detail 
about the 68HC000.

Decode and Control Logic

All of the address decode, interrupt control, and arbitration functions for the local 
CPU are partitioned between two 68-pin PLDs. One PLD provides the following 
address decode and arbitration functions for the 68HC000:

• Local bus arbitration
• Local SRAM and EPROM chip selects
• Local I/O block decode and R/W strobes
• Data transceiver output controls
• User Command Interrupt/Command Status Buffer controls
• VMEbus DTACK and write strobe generation
• 15 MHz CPU clock and 5 MHz STC clock generation

The other PLD provides the following address decode and interrupt control functions:

• System timing controller chip selects decode
• QPM Mode Register and Direction Latch control strobes
• Local interrupt controller R/W strobes
• 68HC000 Interrupt Acknowledge bus cycle decode
• Local interrupt priority encoding - IPL(0:2)
• Configuration buffer /Status LED control
• Front panel reset /VMEbus reset combination into local reset signal

Local Bus Arbitration

The VMEbus may access a 64 Kbyte block of static RAM on the VMIVME-2540 board 
that is shared with the local 68HC000 CPU. This shared RAM and local data and 
address buses have two possible masters: the CPU has default control, while the 
VMEbus must request access. Figure 1-4 on page 25 shows the local resources 
arbitrated by PLD logic.

A bus request is issued to the 68HC000 whenever the following conditions are met:

a.  A31:A24 matches the setting of DIP switch S2 (A32 mode only)

b. A23:A16 matches the setting of DIP switch S3

c. AM[5:0] matches the code for standard or extended data access

d. AM2 and jumpers E53/E54 match supervisory/nonprivileged access type

e. Signals IACK*, BGACK*, and SRBSEL* are not asserted.
24



I/O Processor 1
Figure 1-4  Local Bus Arbitration

The 68HC000 responds with a Bus Grant within 1.5 to 3.5 clock cycles after it 
completes the current bus cycle. One clock cycle after BUSGNT* is asserted, the local 
bus arbiter asserts Bus Grant Acknowledge (BGACK*), enabling the VMEbus buffers 
and local SRAM chip selects. VMEbus DTACK* is asserted synchronously to 
terminate the access, after which the VMEbus master withdraws control. Back-to-back 
and read-modify-write VMEbus accesses are not supported by the local bus arbiter: 
the 68HC000 executes its firmware in the same SRAM chips accessed by the VMEbus, 
thus the VMIVME-2540 local CPU is always granted the local bus after a VMEbus 
access.

D[31:16]

VHOE*

D[15:0]

VLOE*

BGACK*

Control

A[15:1]

Base
Address
Decode

A[31:16]

68HC000
CPU

High-to-Low
Transfer XOE*

Byte 0/1
SRAM

Byte 2/3
SRAM

68HC000
CPU

Chip Selects
VLOE*
VHOE*
XOE*

BUSREQ*
BUSGNT*
BGACK*

DTACK*

LD[15:0]

Address
25



     1 VMIVME-2540 Intelligent Counter/Controller
Local Address Decode

The memory map of the board local resources occupies 1 Mbyte of the 16 Mbyte 
68HC000 address space, thus only LA[19:1] are decoded. Table 1-1 below and   
Table 1-2 on page 27 list the local CPU and the local I/O address maps for the 
VMIVME-2540. The addresses in the tables are not accessible from the VMEbus; these 
are local resources accessed by the local CPU using those addresses. Note that for all 
local I/O addresses, three signals are decoded: IOSEL*, IORD*, and IOWR*. All local 
address decode applies to the VMIVME-2540 local CPU only. The VMEbus shared 
memory is accessible from both the local bus and the VMEbus; however, the local 
CPU address space used to access this memory has no correlation to the address space 
used for VMEbus access. This latter address space is user-controlled via switch 
settings. 

Table 1-1  VMIVME-2540 Local CPU Address Map

HEX Address Function

00000 to 0FFFF EPROM Firmware

10000 to 7FFFF Not Used

80000 to 8FFFF I/O Address Space

90000 to DFFFF Not Used

E0000 to EFFFF Static RAM - local access only

F0000 to FFFFF Static RAM – VMEbus-shared access
26



I/O Processor 1
Table 1-2  VMIVME-2540 Local I/O Address Map

HEX Address Mnemonic Function Comments

80000 RDCFG Read board configuration straps D14, D15

80000 WRENA Write master interrupt enable to ID15 1 = enabled

80002 WRLED Write status LED value to ID15 1 = on

80004 CLRCMD Clear VMEbus command interrupt F/F

80006 MODE Quadrature Position Measurement Mode Read/Write

80008 RDDIR Read 16-bit QPM direction latch

8000A LDSRB Load Slave Response Buffer (Command Status) Write-only

80010 VA[3:0] VMEbus Interrupt Vector ’A’ low nibble IIIC

80012 VA[7:4] VMEbus Interrupt Vector ’A’ high nibble IIIC

80014 IRQA VMEbus Interrupt ’A’ IRQ level IIIC

80018 VB[3:0] VMEbus Interrupt Vector ’B’ low nibble IIIC

8001A VB[7:4] VMEbus Interrupt Vector ’B’ high nibble IIIC

8001C IRQB VMEbus Interrupt ’B’ IRQ level IIIC

80020 LTCRD Read and Clear Interrupt Controller No.1 IRQs TC0 - TC11

80022 LMASK Write - Load Interrupt Controller No.1 mask TC0 - TC11

80022 LMRD Read - Read Interrupt Controller No.1 mask TC0 - TC11

80024 UTCRD Read and Clear Interrupt Controller No. 2 IRQs TC12 - TC23

80026 UMASK Write - Load Interrupt Controller No. 2 mask TC12 - TC23

80026 UMRD Read - Read Interrupt Controller No. 2 mask TC12 - TC23

80028 TMRRD Read and Clear Interrupt Controller No. 3 IRQs TMR0 - TMR5

8002A TMASK Write - Load Interrupt Controller No. 3 mask TMR0 - TMR5

8002A TMRD Read - Read Interrupt Controller No. 3 mask TMR0 - TMR5

8002C CLRDIR Clear Direction Change Interrupt Controller

80030 to 8003F - Not used.

80040 STC0D STC0 Data Port

80042 STC0C STC0 Control Port

80044 STC1D STC1 Data Port

80046 STC1C STC1 Control Port

80048 STC2D STC2 Data Port

8004A STC2C STC2 Control Port

8004C STC3D STC3 Data Port

8004E STC3C STC3 Control Port

80050 STC4D STC4 Data Port

80052 STC4C STC4 Control Port

80054 STC5D STC5 Data Port

80056 STC5C STC5 Control Port

80058 to 8FFFF - Not used.
27



     1 VMIVME-2540 Intelligent Counter/Controller
Local I/O Functions

The I/O functions accessed by the VMIVME-2540 local CPU are the AM9513A system 
timing controllers, the VMEbus interrupter modules and local QPM, and 
configuration and status LED interfaces.

a. Configuration Buffer: The VMIVME-2540 may have one, two, four, or six 
AM9513A system timing controllers, depending on the ordering option for the 
board. The number of system timing controllers present on the VMIVME-2540 
board is encoded into configuration jumpers E50 and E51 as shown in Table 2-2 
on page 41. The VMIVME-2540 local CPU reads these configuration jumpers 
with a buffer enabled by address $80000 during initialization.

b. Master Interrupt Enable: The local interrupt controller for the VMIVME-2540 
local CPU may be completely disabled by writing a zero to address $80000. This 
master interrupt enable flip-flop is cleared by the RESET* signal and set by the 
VMIVME-2540 local CPU when initialization is complete.

c. Status LED: The front panel status LED is controlled by local I/O address 
$80002. The LED is illuminated when the VMIVME-2540 local CPU writes a 
logic one to this address and extinguished by a logic zero. The status LED is 
illuminated when the local CPU begins powerup/reset self-test, and 
extinguished when the self-test is completed. Thereafter, the LED will be 
illuminated if a failure or fatal error is detected. The processor is always halted 
and interrupts are disabled when a failure occurs and the LED is illuminated. 
The shared memory area remains accessible by the host for diagnostic 
information retrieval.

d. Clear VMEbus Command Interrupt: The VMEbus command interrupt 
flip-flop is cleared when the VMIVME-2540 local CPU asserts I/O address 
$80004.

e. Quadrature Position Measurement Mode Register: The QPM mode register 
has read/write access at I/O address $80006. Although the QPM mode register 
is implemented with two octal devices, only the least significant 12 bits are 
physically connected to the STC front-end logic.

f. QPM Direction Latch: The current direction of all quadrature channels may be 
read by the VMIVME-2540 local CPU at address $80008. As with the QPM 
Mode Register, this function is implemented with two octal latches, but only 
the least significant 12 bits contain direction information.

g. Command Status Buffer: The Command Status Buffer is an octal register 
located at local I/O address $8000A. Only the local VMIVME-2540 local CPU 
may write to this location. For the VMEbus host, this is a read-only buffer.

h. Intelligent Interface Interrupt Controller (IIIC): The VMIVME-2540 local 
CPU may assert VMEbus interrupts by writing vectors and IRQ levels to the 
Intelligent Interface Interrupt Controller, located at I/O addresses 
$80010-$80014 and $80018-$8001C. The IIIC has only a 4-bit read/write data 
interface to the VMIVME-2540 local CPU, requiring each value to be written in 
successive nibbles.

i. Terminal Count Interrupt Controllers: The system timing controller outputs 
TC[0:23] and TMR[0:5] comprise 30 interrupt sources to the VMIVME-2540 
local CPU. These terminal count signals are logically arranged into three 
groups: signals TC[0:11] are conditioned by Interrupt Controller No.1, signals 
28



I/O Processor 1
TC[12:23] are handled by Interrupt Controller No. 2, and signals TMR[0:5] are 
combined and masked by Interrupt Controller No. 3. For each interrupt 
controller, the interrupt sources are captured into a register which may be read 
and cleared automatically by the VMIVME-2540 local CPU. Each interrupt 
controller also has a read/write mask register. An interrupt source is masked 
by a zero value and enabled by a logic one.

j. System Timing Controller Ports: The system timing controllers are addressed 
by the VMIVME-2540 local CPU as only two locations each: a control port and 
a data port. Transfers at the control port allow direct access to the STC 
command register when writing, and the STC status register when reading. All 
other STC internal locations are accessed through the data port with the 
desired location addressed by the STC data pointer register. Refer to the 
Advanced Micro Devices’ AM9513A/AM9513 Technical Manual for more 
information about the system timing controller.
29



     1 VMIVME-2540 Intelligent Counter/Controller
Local Memory

EPROM Firmware

The VMIVME-2540 local CPU retrieves its startup code and local interrupt vectors 
from two programmed EPROM ICs. The VMIVME-2540 local CPU fetches 
instructions and data from memory, word accesses (16 bits). Program execution is 
started in EPROM at powerup and, after RAM memory test is completed, code is 
copied to static RAM, program control is passed to RAM, and all program execution is 
from RAM from that point. The design of the LDTACK wait-state generator for the 
VMIVME-2540 local CPU dictates that the EPROMs have a data access time of 250 ns 
or less.

The EPROM firmware contains all programming to support the user programming of 
the board described in the “Programming” on page 49. The user controls the input/
output operations performed by the system timing controllers using the command/
command status interface and the channel control blocks, as described in Chapter 3 
“Programming”.

Static RAM

The VMIVME-2540 local CPU has zero-wait-state access to 128 Kbyte of static RAM 
located in four 32 Kbyte x 8 ICs. As shown in Figure 1-4 on page 25, the 
VMIVME-2540 local CPU accesses this static RAM 16 bits at a time. For each 
longword in memory, bytes 2 and 3 connect directly to the VMIVME-2540’s local CPU 
16-bit data bus, while bytes 0 and 1 are accessed through the data transfer 
transceivers. Strobes LWRSTB* and UWRSTB*, decoded from LDS* and UDS*, 
respectively, allow the 68HC000 to modify lower and upper bytes of static RAM 
independently. The design of the LDTACK wait-state generator for the VMIVME-2540 
local CPU requires the use of static RAMs with a data access time of 45 ns or less for 
zero-wait-state operation.

A portion of the static RAM is interfaced to the VMEbus for sharing with the VMEbus 
host processor for control and communication. The VMEbus access to the static RAM 
may be either byte, word, or longword. The local bus arbitration logic only allows the 
VMEbus host to access the upper 64 Kbyte of the RAM, while the 68HC000 has 
granted the local bus. During the VMEbus access cycle, the assertion of RAM chip 
enables and write enables are synchronous to CPUCLK. VMEbus DTACK* is asserted 
one clock cycle after the rising edge of RAM write strobe during a VMEbus write 
cycle, ensuring the integrity of the written data.
30



Local Interrupt Controller 1
Local Interrupt Controller

The local 68HC000 interrupt controller encodes 32 interrupt sources into seven 
prioritized interrupt request levels. STC terminal count signals TC[11:0] are grouped 
into 68HC000 IRQ level 6, signals TC[23:12] are grouped into IRQ level 5, and signals 
TMR[5:0] are grouped into IRQ level 4. The VMEbus command interrupt asserts IRQ 
level 7, while the quadrature direction change interrupt is mapped into 68HC000 IRQ 
level 3. IRQ levels 1 and 2 are not used in the VMIVME-2540 interrupt structure. The 
QPM direction change interrupt is described in “QPM Direction Change Interrupt 
Logic” on page 23. The following sections will describe STC and the VMEbus 
command interrupt sources.

STC Interrupts

Each system timing controller has five, 16-bit counters with programmable terminal 
count outputs. Each terminal count output may be programmed either to be high, 
low, a single clock pulse wide, or square wave output. In each STC, counters one 
through four are associated with the front panel I/O connectors and are members of 
the TC[23:0] bus, while the fifth counter output is intended only for creating a soft 
interrupt after a specified time and is a member of the TMR[5:0] bus. The STC 
terminal count interrupts are masked and edge-detected by 6-bit interrupt controllers, 
implemented via PLD logic. The logic inside the interrupt controller is shown in 
Figure 1-5 on page 32.

VMEbus Command Interrupt

The VMEbus asserts the command interrupt to the VMIVME-2540 local CPU by 
writing the command code to offset $0004 from the base address. PLD logic decodes 
this address and sets an internal flip-flop during the VMEbus command bus cycle. 
The VMIVME-2540 local CPU resets the command interrupt flip-flop by asserting 
local address $8000A.
31



     1 VMIVME-2540 Intelligent Counter/Controller
Figure 1-5  Interrupt Controller for STC Outputs

D Q

Q

D Q

Q

D Q

Q

D Q

Q

CLR

CLR

2-t0-1
MUX

1

0

Y

SEL

CLR

SET

RST*

RD CLR*

LDMASK*

READ*

Data

A1

TCN
CLR

VCC

IRQ*

From other interrupts
32



VMEbus Slave Interface 1
VMEbus Slave Interface

VMEbus Slave Address Decode

The “Local Bus Arbitration” on page 24 , was discussed in a general sense. Figure 1-6 
on page 34 shows the actual VMEbus slave address decode logic and address 
snapshot registers on the VMIVME-2540 board. Comparators assert signals HCMP*, 
MCMP*, and LCMP* when the VMEbus address and address modifiers match the 
settings of DIP switches S1, S2, and the code for standard/extended data access.

The VMEbus specification requires that the address and control signals be stable for at 
least 10 ns prior to the assertion of DS0*/DS1*, and held valid a minimum of 30 ns 
after this assertion. DS0*/DS1* is combined to create the signal VSTB, the composite 
active-high VMEbus data strobe. A sufficient time after the rising edge of VSTB, the 
signal VACLK takes a snapshot of the VMEbus address comparison signals HCMP*, 
MCMP*, and LCMP*, control signals LWORD*, WRITE*, AM2, and the lower 
VMEbus address bus. Thus, all of the VMEbus lower address control, and board select 
information is held constant until the next falling edge of DS0*/DS1*.

A delay line is used to shorten the leading edge of VSTB* so that all registered address 
and control information is valid going into the local bus arbiter. Once VSTB* is 
asserted and all other comparison information is valid, the PLD logic asserts 
BUSREQ* asynchronously to the VMIVME-2540 local CPU (the 68HC000), and the 
VMEbus access proceeds as described in “Local Bus Arbitration” on page 24.

Command Status Code

When the VMIVME-2540 local CPU has finished processing a commanded action, a 
command status code is placed in the command status buffer. The VMEbus host can 
poll this register with minimal delay since it is not arbitrated as a local resource. This 
command status buffer benefits the VMIVME-2540 local CPU by increasing the 
portion of the local bus bandwidth dedicated to the VMIVME-2540 local CPU, and not 
to VMEbus access service. The address decode for the VMEbus polling buffer occurs 
in two parts: the upper 16 address lines by one PLD device, while the lower sixteen 
address lines are decoded a second PLD. The second device generates signal SRBSEL* 
which is connected to the first PLD device. The first PLD then generates signal 
SRBOE* if the VMEbus data access address is offset $0006 from the base address. 
Signal SRBOE* enables the status code data onto the VMEbus data bus lines VLD[7:0] 
and also asserts a VMEbus DTACK* through the VMEbus interrupter module 
described in the next section. The VMEbus DTACK* delay from decode of signal 
SRBOE* is one to two 15 MHz clock periods.
33



     1 VMIVME-2540 Intelligent Counter/Controller
Figure 1-6  VMEbus Slave Address Decode

5
2
1

DIP
Switch

5
2
1

DIP
Switch

5
2
1Standard/

Extended
Access

20 nsec
Delay

U71

3
7
4

U63

EPM7032

LWORD*
WRITE*

AM2

BGACK*

Arbiter
EP1810

U46

SRBSEL*

LA15-LA1

Local Address Bus
U79

Arbiter
EP1810

U45

HCMP*

S2

S2

MCMP*

LCMP*

AM(0, 1, 3, 5)

U61A
U61B

VSTB

DS0*

DS1*

A23-A16

A15-A1

A31-A24

BUSREQ*

BUSGNT*

BGACK*

CPUCLK

U75

U74

U68

5 nsec Tap
34



VMEbus Interrupter Modules 1
VMEbus Interrupter Modules

The VMIVME-2540 has two interrupt modules implemented in PLD. Figure 1-7 below 
shows the block diagram of the Intelligent Interface Interrupter Module. This design 
allows the 68HC000 microprocessor to interrupt a VMEbus master on any two of the 
seven IRQ levels simultaneously without requiring the arbitration for the local bus 
during the IACK cycle.

The VMIVME-2540 local CPU programs the interrupter module through a 4-bit 
bidirectional data port by asserting CS*, RDWR* and the 3-bit address of the nibble to 
be written. Vectors A and B are 8-bit registers which contain the VMEbus interrupt 
vectors. ENA/IRQA and ENA/IRQB are 4-bit registers which contain the 3-bit 
VMEbus IRQ level to be asserted and IRQ enable. The status of these registers may be 
verified at any time by the VMIVME-2540 local CPU through the same local data port. 
Refer to Table 1-2 on page 27 for address decode information. Note that writing the 
code 8 to either IRQ/enable control location does not enable a VMEbus IRQ level 
(there is no IRQ 0).

Figure 1-7  Intelligent Interface Interrupter Module

Vector A

ENA/IRQ A

Vector B

ENA/IRQ B

Data
MUX

LDOE

Latch

L
a
t
c
h

CS*

RDWR*
LA[3:1]

Reset*

CPUCLK

Control
Logic

Synchronizer

D[7:0]

VDOE

IRQB

IRQA

VGATE

D
T
A
C
K
*

I
A
C
K
O
U
T
*

I
A
C
K
I
N
*

V
S
T
B
*

A
S
*

VMEbus Interface

Compare
Logic

Priorty
Decode

Latch

I
R
Q
1

I
R
Q
2

I
R
Q
3

I
R
Q
4

I
R
Q
5

I
R
Q
6

I
R
Q
7

VGATE

A
1

A
3

A
2

Local CPU 
Interface

LD[3:0]
35



     1 VMIVME-2540 Intelligent Counter/Controller
36



CHAPTER

2

Configuration and Installation
Contents

Unpacking Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
I/O Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Recommended Discrete Wire Connectors and Terminal Blocks  . . . . . . . . . . . . . . . . 45
TTL/Single-Ended Input Signal Compatibility Configuration . . . . . . . . . . . . . . . . . 46
37



     2 VMIVME-2540 Intelligent Counter/Controller
Unpacking Procedures

CAUTION: Some of the components assembled on VMIC’s products may be sensitive 
to electrostatic discharge and damage may occur on boards that are subjected to a 
high-energy electrostatic field. When the board is placed on a bench for configuring, 
etc., it is suggested that conductive material should be inserted under the board to 
provide a conductive shunt. Unused boards should be stored in the same protective 
boxes in which they were shipped.

Upon receipt, any precautions found in the shipping container should be observed. 
All items should be carefully unpacked and thoroughly inspected for damage that 
might have occurred during shipment. The board(s) should be checked for broken 
components, damaged printed circuit board(s), heat damage, and other visible 
contamination. All claims arising from shipping damage should be filed with the 
carrier and a complete report sent to VMIC together with a request for advice 
concerning the disposition of the damaged item(s).
38



Configuration 2
Configuration

The VMIVME-2540 printed circuit board has two 8-position DIP switches and several 
jumper options, as shown in Figure 2-1 below. The configurations of these options are 
discussed in the following sections.

Figure 2-1  VMIVME-2540 DIP Switches and Jumper Options

P2

P3

P4

E45 E46 E47 E48
E41 E42 E43 E44

E37 E38 E39 E40
E33 E34 E35 E36

E29 E30 E31 E32

E25 E26 E27 E28
E21 E22 E23 E24
E17 E18 E19 E20

E13 E14 E15 E16
E9 E10 E11 E12

E5 E6 E7 E8

E1 E2 E3 E4

P1

E50

E51

E53

E52

E54

E49

S3

S2
39



     2 VMIVME-2540 Intelligent Counter/Controller
DIP Switch Settings

The VMEbus base address of the VMIVME-2540 is set by 8-position DIP switches S2 
and S3. The settings of DIP switch S2 correspond to VMEbus address bits A31 
through A24, while the settings of DIP switch S3 correspond to VMEbus address bits 
A23 through A16. Setting an individual switch to the on position matches a zero 
address bit value, conversely, a one address bit value compares to the off position. 
Figure 2-2 below shows the settings for DIP switches S2 and S3 for a sample VMEbus 
address range.

Figure 2-2  Example DIP Switch Settings

Jumper Options

The VMIVME-2540 printed circuit board has 51 user-configurable and three fixed 
jumper options as shown in Figure 2-1 on page 39. Forty-eight of the user-
configurable jumper options (E1 through E48) allow the user to remove the RS-422 
receiver termination resistors for TTL compatibility. Table 2-1 below shows the 
correspondence between jumpers E1-E48 and channel 0 to 23 clock and gate receiver 
termination resistors.

NOTE: Proper RS-422 line termination uses only one 120 termination resistor. Line 
driver damage can result from driving more than one termination resistor.

Table 2-1  RS-422 Receiver Termination Jumper Options

Input Jumper Input Jumper Input Jumper Input Jumper

CLOCK0 E28 CLOCK6 E40 CLOCK12 E4 CLOCK18 E16
GATE0 E27 GATE6 E39 GATE12 E3 GATE18 E15

CLOCK1 E26 CLOCK7 E38 CLOCK13 E2 CLOCK19 E14
GATE1 E25 GATE7 E37 GATE13 E1 GATE19 E13

CLOCK2 E32 CLOCK8 E44 CLOCK14 E8 CLOCK20 E20
GATE2 E31 GATE8 E43 GATE14 E7 GATE20 E19

CLOCK3 E30 CLOCK9 E42 CLOCK15 E6 CLOCK21 E18
GATE3 E29 GATE9 E41 GATE15 E5 GATE21 E17

CLOCK4 E36 CLOCK10 E48 CLOCK16 E12 CLOCK22 E24
GATE4 E35 GATE10 E47 GATE16 E11 GATE22 E23

CLOCK5 E34 CLOCK11 E46 CLOCK17 E10 CLOCK23 E22
GATE5 E33 GATE11 E45 GATE17 E9 GATE23 E21

UP UP UP UP

UP UP UPUP

OFF

1 2 3 4 5 6 7 8

S3

A16 A23

UPUP UP UP

UP UPUPUP

OFF

1 2 3 4 5 6 7 8

S2

A24 A31

Base Address = $C9740000
40



Configuration 2
Jumper option E49 corresponds to the type of EPROMs installed on the 
VMIVME-2540 board and is installed at the factory.

Jumper options E51 and E50 correspond to the VMIVME-2540 ordering options and 
are installed by the factory. Table 2-2 below list the placement of wire jumpers E50 and 
E51 and the corresponding configurations.

Jumper option E52 controls whether the VMIVME-2540 responds to standard 
VMEbus address space (A24) or extended VMEbus address space (A32). With the 
shunt installed at location E52, the VMIVME-2540 is configured as an A32 VMEbus 
slave. When location E52 does not have a shunt installed, the board is configured as 
an A24 VMEbus slave.

Jumper options E53 and E54 determine whether the VMIVME-2540 will occupy 
supervisory only, nonprivileged only, or both supervisory and nonprivileged 
VMEbus address spaces. Table 2-3 below list the placements of jumper E52, E53 and 
E54 with the corresponding responses of the VMIVME-2540 board.

Table 2-2  Configuration Jumpers E50 and E51

Dash E50 E51 Configuration

-000 Installed Installed Four Channels

-100 No Jumper Installed Eight Channels

-200 Installed No Jumper Sixteen Channels

-300 No Jumper No Jumper Twenty-Four Channels

Table 2-3   VMEbus Access Select Jumpers E52, E53 and E54

VMEbus Access Type E52 E53 E54

Supervisory Only-Standard/A24 No Jumper Installed No Jumper

Nonprivileged Only - Standard/A24 No Jumper Installed Installed

Supervisory Only - Extended/A32 Installed Installed No Jumper

Nonprivileged Only - Extended/A32 Installed Installed Installed

Supervisory and Nonprivileged - Standard/A24 No Jumper No Jumper No Jumper

Supervisory and Nonprivileged - Extended/A32 Installed No Jumper No Jumper

VMEbus Response Disabled Don’t Care No Jumper Installed
41



     2 VMIVME-2540 Intelligent Counter/Controller
I/O Connector Pin Assignments

The VMIVME-2540 front panel connector pin assignments are shown in Table 2-4 
below for P3 and Table 2-5 on page 43 for P4. Connector orientation is shown in 
Figure 2-3 on page 44. P3 and P4 are DIN 41612 Type C 96-pin male connectors with 
multiple fixing brackets. Each connector supports 12 measurement/control channels 
consisting of differential clock, gate, and output signals as well as ground and 
TTL-compatibility voltage (VTTL) pins. The VTTL voltage is a nominal 1.4 V source 
which may be externally tied to the inverting input of the RS-422 line receivers for 
TTL input compatibility.

Table 2-4  I/O Connector P3 Pin Assignments

Pin Signal Pin Signal Pin Signal

A32 CLK11- B32 GATE11- C32 OUT11-

A31 CLK11+ B31 GATE11+ C31 OUT11+

A30 VTTL B30 GND C30 VTTL

A29 CLK10- B29 GATE10- C29 OUT10-

A28 CLK10+ B28 GATE10+ C28 OUT10+

A27 GND B27 VTTL C27 GND

A26 CLK9- B26 GATE9- C26 OUT9-

A25 CLK9+ B25 GATE9+ C25 OUT9+

A24 CLK8- B24 GATE8- C24 OUT8-

A23 CLK8+ B23 GATE8+ C23 OUT8+

A22 VTTL B22 GND C22 VTTL

A21 CLK7- B21 GATE7- C21 OUT7-

A20 CLK7+ B20 GATE7+ C20 OUT7+

A19 GND B19 VTTL C19 GND

A18 CLK6- B18 GATE6- C18 OUT6-

A17 CLK6+ B17 GATE6+ C17 OUT6+

A16 CLK5- B16 GATE5- C16 OUT5-

A15 CLK5+ B15 GATE5+ C15 OUT5+

A14 VTTL B14 GND C14 VTTL

A13 CLK4- B13 GATE4- C13 OUT4-

A12 CLK4+ B12 GATE4+ C12 OUT4+

A11 GND B11 VTTL C11 GND

A10 CLK3- B10 GATE3- C10 OUT3-

A9 CLK3+ B9 GATE3+ C9 OUT3+

A8 CLK2- B8 GATE2- C8 OUT2-

A7 CLK2+ B7 GATE2+ C7 OUT2+

A6 VTTL B6 GND C6 VTTL

A5 CLK1- B5 GATE1- C5 OUT1-

A4 CLK1+ B4 GATE1+ C4 OUT1+

A3 GND B3 VTTL C3 GND

A2 CLK0- B2 GATE0- C2 OUT0-

A1 CLK0+ B1 GATE0+ C1 OUT0+
42



I/O Connector Pin Assignments 2
Table 2-5   I/O Connector P4 Pin Assignments

PIN SIGNAL PIN SIGNAL PIN SIGNAL

A32 CLK23- B32 GATE23- C32 OUT23-

A31 CLK23+ B31 GATE23+ C31 OUT23+

A30 VTTL B30 GND C30 VTTL

A29 CLK22- B29 GATE22- C29 OUT22-

A28 CLK22+ B28 GATE22+ C28 OUT22+

A27 GND B27 VTTL C27 GND

A26 CLK21- B26 GATE21- C26 OUT21-

A25 CLK21+ B25 GATE21+ C25 OUT21+

A24 CLK20- B24 GATE20- C24 OUT20-

A23 CLK20+ B23 GATE20+ C23 OUT20+

A22 VTTL B22 GND C22 VTTL

A21 CLK19- B21 GATE19- C21 OUT19-

A20 CLK19+ B20 GATE19+ C20 OUT19+

A19 GND B19 VTTL C19 GND

A18 CLK18- B18 GATE18- C18 OUT18-

A17 CLK18+ B17 GATE18+ C17 OUT18+

A16 CLK17- B16 GATE17- C16 OUT17-

A15 CLK17+ B15 GATE17+ C15 OUT17+

A14 VTTL B14 GND C14 VTTL

A13 CLK16- B13 GATE16- C13 OUT16-

A12 CLK16+ B12 GATE16+ C12 OUT16+

A11 GND B11 VTTL C11 GND

A10 CLK15- B10 GATE15- C10 OUT15-

A9 CLK15+ B9 GATE15+ C9 OUT15+

A8 CLK14- B8 GATE14- C8 OUT14-

A7 CLK14+ B7 GATE14+ C7 OUT14+

A6 VTTL B6 GND C6 VTTL

A5 CLK13- B5 GATE13- C5 OUT13-

A4 CLK13+ B4 GATE13+ C4 OUT13+

A3 GND B3 VTTL C3 GND

A2 CLK12- B2 GATE12- C2 OUT12-

A1 CLK12+ B1 GATE12+ C1 OUT12+
43



44      2
VM

IVM
E-2540 Intelligent C

ounter/C
ontroller

A   B   C

A   B   C

Pin No.

32

1

Front View

ROW
F
ig

u
re 2-3  P

3/P
4 P

inout Layout

A   B   C

A   B   C

Pin No.

32

1

Front View

ROW

Isometric View

P4

VMIVME2540

P3



Recommended Discrete Wire Connectors and Terminal Blocks 2
Recommended Discrete Wire Connectors and Terminal Blocks

The VMIVME-2540 has a large amount of front panel I/O which must be broken out 
by cabling and possibly rack-mounted terminal blocks. If the user wishes to use 
discrete wire connectors and cables, the suggested manufacturer is Harting Elektronik, 
Inc., 2155 Stonington Ave., Suite 212, P.O. Box 95710, Hoffman Estates, Illinois 60195-0710. 
The recommended connector components for cabling to P3 and P4 are given in the 
table below.

The RS-422 differential signals should be connected by twisted-pair insulated wires, 
24 AWG solid or stranded copper conductors (R < 30/1,000 ft for other conductors) 
with a maximum cable length of 4,000 feet. Care should be taken to ensure that each 
signal group is properly grounded for reliable operation.

TTL signals may be connected by flat 96-conductor ribbon cable, 30 AWG insulated 
copper-stranded conductor. The corresponding female 96-pin DIN connector for 
flat-ribbon cable is ERNI 913.031 or similar. It is recommended that the total cable 
length be 50 feet or less for the TTL application with attention given to maximum 
signal transition rate and signal degradation over distance. RS-422 differential 
interface is clearly superior for longer cable lengths. 

If the user wishes the I/O signals from the VMIVME-2540 front panel to be broken out 
at terminal blocks, the VMIACC-BT04 Dual 96-pin Transition Panel is suggested. The 
VMIACC-BT04 is a 19-inch rack-mountable panel which breaks all 192 signals out 
from two DIN 96-pin connectors to standard terminal blocks. Connection between the 
VMIACC-BT04 and the VMIVME-2540 front panel is made by 96-conductor ribbon 
cables, three foot length recommended.

Table 2-6  Recommended Discrete Wire Connectors and Accessories 

COMPONENT HARTING CATALOG #

96-pin Discrete Wire Connector 0903-096-3214

Female Crimp Contacts 0902-000-8484

Connector Shell Housing 0903-096-0501

Left-Locking Lever 0902-000-9902

Right-Locking Lever 0902-000-9903
45



     2 VMIVME-2540 Intelligent Counter/Controller
TTL/Single-Ended Input Signal Compatibility Configuration

The VMIVME-2540 can be configured for single-ended input signals on a 
channel-by-channel basis by removing jumper shunts and externally wiring the TTL 
compatibility voltage (VTTL) to the corresponding inverting input of the RS-422 line 
receiver (inputs with a (-) suffix). Connection of the VTTL input to the (-) input will 
establish the VTTL voltage level as the threshold for the single-ended input signal at 
the (+) input. This input signal is connected to the noninverting input of the RS-422 
line receiver (inputs with a (+) suffix). Care must be taken to limit the voltage range of 
the input signal when the jumper shunts are removed. Also, exercise caution in the 
connection of the VTTL signal to the (-) input(s) to avoid damage to the VTTL voltage 
generation circuitry of the VMIVME-2540. Select the channels which are to be 
configured for TTL operation, remove the associated gate and clock jumpers for those 
channels. Make the associated wiring changes for VTTL-to-input on the P3 and/or P4 
front panel connectors.Table 2-7 below is the TTL/Single-Ended signal configuration. 
Figure 2-4 on page 47 is a typical RS-422 Signal connection and Figure 2-5 is the 
typical TTL signal connection.

Table 2-7   TTL/Single-Ended Input Signal Compatibility Configuration

Clock
Input

Remove 
Jumper

Gate
Input

Remove 
Jumper

VTTL 
Feedback

Ground 
Reference

CLOCK0 E28 GATE0 E27 P3-B3 P3-A3

CLOCK1 E26 GATE1 E25 P3-A6 P3-C3

CLOCK2 E32 GATE2 E31 P3-C6 P3-B6

CLOCK3 E30 GATE3 E29 P3-B11 P3-A11

CLOCK4 E36 GATE4 E35 P3-A14 P3-C11

CLOCK5 E34 GATE5 E33 P3-C14 P3-B14

CLOCK6 E40 GATE6 E39 P3-B19 P3-A19

CLOCK7 E38 GATE7 E37 P3-A22 P3-C19

CLOCK8 E44 GATE8 E43 P3-C22 P3-B22

CLOCK9 E42 GATE9 E41 P3-B27 P3-A27

CLOCK10 E48 GATE10 E47 P3-A30 P3-C27

CLOCK11 E46 GATE11 E45 P3-C30 P3-B30

CLOCK12 E4 GATE12 E3 P4-B3 P4-A3

CLOCK13 E2 GATE13 E1 P4-A6 P4-C3

CLOCK14 E8 GATE14 E7 P4-C6 P4-B6

CLOCK15 E6 GATE15 E5 P4-B11 P4-A11

CLOCK16 E12 GATE16 E11 P4-A14 P4-C11

CLOCK17 E10 GATE17 E9 P4-C14 P4-B14

CLOCK18 E16 GATE18 E15 P4-B19 P4-A19

CLOCK19 E14 GATE19 E13 P4-A22 P4-C19

CLOCK20 E20 GATE20 E19 P4-C22 P4-B22

CLOCK21 E18 GATE21 E17 P4-B27 P4-A27

CLOCK22 E24 GATE22 E23 P4-A30 P4-C27

CLOCK23 E22 GATE23 E21 P4-C30 P4-B30
46



TTL/Single-Ended Input Signal Compatibility Configuration 2
NOTE: *Clock (CLK) or Gate input connections vary depending on the measurements 
to be performed. See Chapter 3 “Programming” for details.

Figure 2-4  Typical RS-422-Compatible Signal Connections

Figure 2-5  Typical TTL-Compatible Signal Connections

NOTE: *Clock (CLK) or Gate input connections vary depending on the measurements 
to be performed. See Chapter 3 “Programming” for details.

Input High

Input Low

Ground

+ CLK or

+ Gate

+ CLK or

+ Gate

GND

VMIVME-2540
Front Panel
P3/P4

User 
Signal
Source

Input High

VTTL

Ground

+ CLK or

+ Gate

- CLK or

- Gate

GND

VMIVME-2540
Front Panel
P3/P4

User 
Signal
Source
47



     2 VMIVME-2540 Intelligent Counter/Controller
48



CHAPTER

3

Programming
Contents

VMEbus Interface Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Command Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Command Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Format of the Operation Mode Select Flag:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Introduction

The user controls the operation of the VMIVME-2540 via the local CPU through a 
shared memory interface, which provides a command-driven system. The shared 
memory is a 64 Kbyte contiguous block of memory and is structured within the local 
CPU program to satisfy the definitions shown in Table 3-1 on page 51. This structure 
definition provides the command register, command status reporting, measurement 
interface, and I/O channel control blocks (CCBs) for the exchange of data between the 
local CPU and the user’s host processor.

Input and output operations are initiated by writing the parameters for the operation 
to the desired CCB, selecting a channel via the channel select register (byte offset 
$000A) and sending the associated command to the local CPU by writing the 
command to the command register (word at offset $0004; byte offset at $0005), and 
monitoring the command status buffer (word at offset $0006; byte offset at $0007).

The command word at offset $0004 and the command status buffer at offset $0006 
have special attributes and handling properties for the local CPU and are the primary 
synchronization method for the VMEbus host program. When the VMEbus host 
writes a command word to offset $0004 (or byte to offset $0005) from the base address, 
an interrupt is generated for the VMIVME-2540 local CPU. 
49



   3 VMIVME-2540 Intelligent Counter/Controller
The VMIVME-2540 local CPU responds to the command interrupt by reading the 
command and channel ID locations, performs the commanded action defined by the 
command and the parameters in the CCB of the selected channel, and writes the 
command status code to the command status buffer. The command status buffer is a 
read-only register and cannot be cleared by writing a zero to the register. The 
command status register can be cleared by writing the clear command status 
command code ($1C) to the command register, which will cause the local processor to 
clear the command status byte. The host should verify that this register is clear (zero) 
prior to initiating a command.

The VMEbus host can poll the command status buffer to wait for a nonzero response 
code, or the command status IRQ and command status vector locations can be 
initialized with a VMEbus IRQ level and vector, and host interrupt processing used 
for command status reporting.

The VMIVME-2540 performs a variety of the input and output operations under 
command control of the host processor. Input operations for signal measurement 
processes can be interrupt-driven, polled through the measurement queue interface, 
polled via the channel status buffer of the CCB, or polled via the channel’s data 
validity flag.

Channels can also be set up to measure continuously through the continuous-discrete 
descriptor (offset $000B from the base address). The VMEbus-shared memory 
addresses, command codes, command status codes, and channel control blocks 
entries will be discussed in the following sections.
50



VMEbus Interface Memory Map 3
VMEbus Interface Memory Map

The memory map for the VMIVME-2540 resources, accessible by the VMEbus host is 
given in Table 3-1. The contents of the shared memory area are initialized to zero (0) at 
powerup/reset/initialization unless otherwise noted in the following descriptions. 

NOTE: The following formats are presented in terms of the vmebus with byte 
accesses shown in terms of the data bus lines on which they are accessed; that is, odd 
bytes are accessed on bus data lines D0 through D7, and even bytes are accessed on 
data lines D8 through D15. All byte-width data, once moved to the internal registers of 
most host processors, will be bit-accessed using Bit 0 through Bit 7 for bit 
manipulation operations.

Table 3-1  VMIVME-2540 VMEbus I/F Addresses

Offset Function Access Size

$0000 Board ID/Configuration *Read/Write Word

$0002 Firmware Revision Level *Read/Write Word

$0004 Command Read/Write Word/Byte***

$0006 Command Status Read Word/Byte***

$0008 Command Status IRQ Level Read/Write Byte

$0009 Command Status Interrupt Vector Read/Write Byte

$000A Channel ID Read/Write Byte

$000B Continuous/Discrete Flag Read/Write Byte

$000C Measurement Flag Read/Write Byte

$000E Measurement Channel Read/Write Byte

$000F Measurement Status Read/Write Byte

$0010 Ch 0 Channel Control Block Read/Write **See CCB DESC

$0020 Ch 1 Channel Control Block Read/Write **See CCB DESC

$0030 Ch 2 Channel Control Block Read/Write **See CCB DESC

$0040 Ch 3 Channel Control Block Read/Write **See CCB DESC

$0050 Ch 4 Channel Control Block Read/Write **See CCB DESC

$0060 Ch 5 Channel Control Block Read/Write **See CCB DESC

$0070 Ch 6 Channel Control Block (1) Read/Write **See CCB DESC

$0080 Ch 7 Channel Control Block (1) Read/Write **See CCB DESC

$0090 Ch 8 Channel Control Block (2) Read/Write **See CCB DESC

$00A0 Ch 9 Channel Control Block (2) Read/Write **See CCB DESC

$00B0 Ch 10 Channel Control Block (2) Read/Write **See CCB DESC

$00C0 Ch 11 Channel Control Block (2) Read/Write **See CCB DESC

$00D0 Ch 12 Channel Control Block (2) Read/Write **See CCB DESC

$00E0 Ch 13 Channel Control Block (2) Read/Write **See CCB DESC

$00F0 Ch 14 Channel Control Block (2) Read/Write **See CCB DESC

$0100 Ch 15 Channel Control Block (2) Read/Write **See CCB DESC

$0110 Ch 16 Channel Control Block (3) Read/Write **See CCB DESC

$0120 Ch 17 Channel Control Block (3) Read/Write **See CCB DESC

$0130 Ch 18 Channel Control Block (3) Read/Write **See CCB DESC

$0140 Ch 19 Channel Control Block (3) Read/Write **See CCB DESC
51



   3 VMIVME-2540 Intelligent Counter/Controller
NOTE: * User should not write to this area: value initialized/used by local CPU.                         
** CCB is the Channel Control Block described in the Channel Control Block Registers on 
page 57. *** TCCB is the Timer Channel Control Block described in the Timer Channel 
Control Block on page 57. (1) Usable on options 100, 200, and 300 only.                                                                               
(2) Usable on options 200 and 300 only.                                                                                           
(3) Usable on option 300 only.

Board ID/Configuration Buffer

The ID/Configuration buffer (Table 3-2 below) contains the board ID at offset $0000 
and the board configuration at offset $0001. The board ID is always $25 for the 
VMIVME-2540, and the configuration byte is the number of 16-bit channels available 
on the board. The buffer is updated upon completion of powerup or front panel reset 
initialization and self-test, and should not by altered by the user. The ID buffer value 
corresponding to the VMIVME-2540 ordering options is given in Table 3-3 below. 
During reset initialization or self-test, the board ID location value is undefined.

Offset Function Access Size

$0150 Ch 20 Channel Control Block (3) Read/Write **See CCB DESC

$0160 Ch 21 Channel Control Block (3) Read/Write **See CCB DESC

$0170 Ch 22 Channel Control Block (3) Read/Write **See CCB DESC

$0180 Ch 23 Channel Control Block (3) Read/Write **See CCB DESC

$0190 Timer 0 Control Block Read/Write ***See TCCB DESC

$01A0 Timer 1 Control Block (1) Read/Write ***See TCCB DESC

$01B0 Timer 2 Control Block (2) Read/Write ***See TCCB DESC

$01C0 Timer 3 Control Block (2) Read/Write ***See TCCB DESC

$01D0 Timer 4 Control Block (3) Read/Write ***See TCCB DESC

$01E0 Timer 5 Control Block (3) Read/Write ***See TCCB DESC

$01F0-$0207 Continuous-Discrete Flags *Read/Write Byte

$0208-$021F Measurement Data Validity Flags Read/Write Byte

$0220-$03DF Internal Flags/Reserved *Read/Write Byte/Word/Long

$03E0-$03FF Firmware Release Information *Read/Write Byte/Word/Long

$0400-$3FFF Diagnostic/Utility Buffer *Read/Write Byte/Word/Long

$4000-$FFFF Scratch Pad/Reserved *Read/Write Byte/Word/Long

Table 3-2  Board ID/Configuration (Offset $0000)

Bit 15 Bit 0

16-bit Board ID/Configuration Value

Table 3-3  VMIVME-2540 ID/Configuration Values

Order Option Configuration ID Buffer Value

   -000 Four Channels $2500

    -100 Eight Channels $2501

    -200 Sixteen Channels $2502

    -300 Twenty-Four Channels $2503

Table 3-1  VMIVME-2540 VMEbus I/F Addresses (Continued)
52



VMEbus Interface Memory Map 3
Firmware Revision Level

The Firmware Revision Level code is a 4-digit hexadecimal value initialized at 
completion of self-test. The firmware revision code has major and minor levels 
formatted as bytes, that is, $0118 is interpreted as version 1.24. During powerup or 
front panel reset initialization and self-test, the firmware revision code is undefined.

Command Code

The Command Code is a 16-bit value written to the command code location (offset 
$0004) of the share memory area by the VMEbus host to instruct the VMIVME-2540 
local CPU to perform an operation. A write operation to the command code location 
results in a command interrupt for the VMIVME-2540 local CPU. The command code 
may also be written as an 8-bit byte to location $0005. The list of valid command codes 
are contained in Table 3-5. The command code is initialized to $0000 at powerup, after 
a reset, or after an initialize command. Command descriptions are presented in 
Command Status Codes on page 63.

NOTE: A read operation to the command location from the VMEbus does not assert 
the command interrupt to the local CPU. 

Command Status Code

The command status code is an 8-bit value (Table 3-6 on page 54) placed in the status 
latch by the VMIVME-2540 local CPU as a response to a command from the host 
program. The command status code is returned via the shared memory space when 
command processing has completed. The command status is accessible in the shared 
memory area at word offset $0006 or byte offset $0007. The command status read 
operation by the host will occur with minimal DTACK* delay for the access. The host 
processor VMEbus access to this location on the VMIVME-2540 does not arbitrate for 
local CPU bus resource. This feature permits continuous polling by the host processor 
without degrading local CPU performance. However, this feature allows 
simultaneous access to the latch by both the local CPU and the host processor which 
may result in bus transition states being read by the host processor via the VMEbus. 
To reduce problems with transition data, the use of a paced access (using delays 
between reads) is recommended for the detection of a nonzero command status. After 
host detection of a nonzero command status, a second read should be performed 
(with or without delay) and then verified as matching the first. This double read 

Table 3-4  Firmware Revision Level (Offset $0002)

Bit 15 Bit 0

Firmware Revision Code

Table 3-5   Command Code (Offset $0004)

Bit 15 Bit 0

16-bit Command Code
53



   3 VMIVME-2540 Intelligent Counter/Controller
verification method should be used even if the host processor is providing a paced 
access to the latch using delays between consecutive reads. If the command status IRQ 
has been enabled by the host for command status delivery, the local CPU asserts that 
IRQ and vector after placing the command status code in the latch. This eliminates the 
read verification requirement, and a command status buffer read will always retrieve 
stable and valid data. The command status word is initialized to $FF00 after powerup 
or reset. Refer to the Command Status Codes on page 63, and Table 3-21 on page 63.

Command Status Interrupt Request Level

The command status interrupt control byte contains the VMEbus interrupt request 
level and interrupt enable for command status reporting from the VMIVME-2540 
local CPU back to the VMEbus host. This interrupt is used exclusively for command 
status reporting by the VMIVME-2540, and eliminates the need for host polling to 
obtain command completion and status information when commands are issued to 
the VMIVME-2540. All commands written to the board will be followed by a nonzero 
command status code when processing is completed and includes both reporting of 
an error-free command status (command acknowledge) and error status code. The clear 
command status and the read... commands are exceptions. The clear command status 
reports a $00 command status for successful processing of the command, and should 
always precede a command to initiate any operation of the VMIVME-2540. The read... 
commands (event count and quadrature measurement operations) will report a status 
of measurement ready for successful command processing, or an error status if the 
read... command processing fails. The read command must be issued by the host 
processor to acquire the discrete (single) measurement data for event count and 
quadrature operations. The read command should only be issued after a channel has 
been set up for the desired measurement operation by sending either event count or 
quadrature commands.

The interrupt request level is a 3-bit field using codes $01 through $07 for IRQ1 
through IRQ7. The interrupt enable control bit is used by the local CPU to sent the 
indicated IRQ level if set to one with no VMEbus interrupt asserted for a zero enable 
control value. An IRQ level code of zero is defined as no interrupt. The IRQ level code 
is initialized to $00.

Table 3-6  Command Status Code (Offset $0006)

Bit 15 Bit 8 Bit 7 Bit 0

Undefined/Not Used 8-bit Status Code

Table 3-7  Command Status Interrupt Request Level (Offset $0008)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

0 0 0 0 Interrupt 
Enable

IRQ
bit 2

IRQ
bit 1

IRQ
bit 0
54



VMEbus Interface Memory Map 3
Command Status Interrupt Vector

The command status interrupt vector byte contains the VMEbus interrupt vector 
placed on the VMEbus during a command status response interrupt acknowledge 
cycle. The interrupt vector is initialized to $00.

Channel ID

The channel ID byte contains a 5-bit field containing the channel number to be 
associated with a user command. Valid channel ID codes range from $00 for channel 0 
through $17 for channel 23; 0 for timer 0 (accesses TCCB 0) through $05 for timer 5 
(accesses TCCB 5). The channel ID is initialized to $0000.

Continuous/Discrete Flag

The continuous/discrete flag is used by the VMEbus host processor to define the 
mode to be used for an input measurement operation. The VMEbus host writes either 
a zero (0) in this location to request that discrete measurement mode of operation (a 
single measurement by the VMIVME-2540 board, or the value $FF to indicate a 
continuous measurement is to be performed by the local CPU on the selected channel. 
A channel configured for continuous measurement (code $FF) results in the local 
processor reading the channel counter(s) as rapidly as possible, processing the 
acquired data and placing the resulting measurement data in the channel control 
block. This flag is cleared by the local CPU after the completion of powerup/self-test/
initialization processing, and is read each time a command is sent by the host 
program. The flag is never written by the local CPU after being cleared at powerup/
reset/initialize.

A channel configured for discrete measurement operation will result in a single 
measurement being placed in the channel control block. For some measurement 
operations, a read... command must be issued by the host processor to acquire the 
single measurement data (event count and quadrature measurement operations). The 
read command should be issued only after a channel has been set up for the desired 
measurement operation. The continuous/discrete flag is initialized to $00.

Table 3-8  Command Status Interrupt Vector (Offset $0009)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

User-Defined Interrupt Vector

Table 3-9  Channel ID (Offset $000A)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

0 0 0 Channel ID Code

Table 3-10  Continuous/Discrete Flag (Offset $000B)

Bit 7 Bit 0

Continuous/Discrete Flag
55



   3 VMIVME-2540 Intelligent Counter/Controller
Measurement Ready Flag

The measurement ready flag is a 16-bit parameter which is used by the local CPU to 
indicate the availability of input measurement data for the host processor. The 
measurement ready flag is a part of the interface associated with the local CPU 
measurement queue. It is used in conjunction with the measurement channel ID 
(location $000E and channel measurement status (location $000F) to manage the data 
in the measurement queue. The flag is used by the local CPU to indicate to the 
VMEbus host that a channel ID and channel status data have been moved from the 
internal queue to the channel ID and status buffers at $000E and $000F. The local CPU 
then sets the measurement ready flag to $FFFF. When the host completes the reads of 
the measurement channel and status code, the host should then clear the 
measurement ready flag (write to zero) in preparation for receiving additional 
measurement parameters from the local CPU’s internal measurement data queue. 
Unlike the command status register, host access to the measurement flag is arbitrated 
by the local CPU on a cycle-by-cycle basis. Due to this local bus arbitration, rapid 
polling of the measurement flag by the VMEbus host will degrade the performance of 
the local CPU. It is suggested that the VMEbus host instead use the timer function, 
delay loops, or other delay methodology to pace access to the measurement ready 
flag. The measurement flag is initialized to $00 at powerup/reset/initialize. 

Measurement Channel ID

The measurement channel ID is a 5-bit binary code corresponding to the channel 
associated with the measurement code. Valid channel ID codes range from $00 for 
channel 0 through $17 for channel 23. The measurement channel ID is initialized to 
$0000. Refer to Discrete Data Acquisition Mode on page 91 for a description of the 
measurement queue interface.

Channel Measurement Status

The channel measurement status is an 8-bit value which indicates the status of a 
measurement function. The measurement status codes are the measurement ready and 
error status codes shown in Table 3-21 on page 63. The measurement status is 
initialized to $00. Refer to Command Descriptions on page 70 for a description of the 
measurement queue interface. 

Table 3-11   Measurement Ready Flag (Offset $000C)

Bit 15 Bit 0

Measurement Flag

Table 3-12   Measurement Channel ID (Offset $000E)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

0 0 0 Channel ID Code

Table 3-13  Channel Measurement Status (Offset $000F)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

8-bit Channel Measurement Status
56



VMEbus Interface Memory Map 3
Channel Control Block Registers

Each channel of the VMIVME-2540 has a Channel Control Block (CCB) of 16 bytes per 
channel (to accommodate the maximum number of channels available). The channel 
control block is used by the local CPU to retrieve the user parameters for input and 
output operation, and to store measurement data for input operations. The contents of 
each CCB will vary according to the operation to be performed and detailed 
information is provided in Modes of Operation on page 64. The CCB should always be 
set up with the correct parameters prior to sending a command (a command code 
write to $0004) operation. This will avoid command status error conditions because of 
improperly initialized CCB parameters. The CCB also is used by the local CPU to 
report channel status information to the host processor (measurements ready, error 
conditions, etc.). This channel status information is a function of the operation being 
performed by the channel. The Channel Status codes used by the VMIVME-2540 are 
shown in Table 3-21 on page 63 and described in Command Status Codes on page 63.

 

Timer Channel Control Block

The Timer Channel Control Blocks (TCCBs) are used to access the timer functions 
available to the user. One timer channel is available for each block of four channels, 
that is, a four-channel board (option 000) has a single time channel, and a 24-channel 
board (option 300) has six timer channels available. This shared memory area contains 
space allocation for the maximum of six timer channel control blocks, but the user will 
only be capable of utilizing the space according to the board option. The timer 
channels use as input one of the five available internal clock sources; therefore, no 
front panel inputs or outputs are available for these channels. The outputs are 
designed to provide only the VMEbus interrupts for a user periodic interrupt 
function, allowing user selection of the interrupt period. The timer interrupt function 
is defined in detail in Channel Output/Waveform Generation Command Codes on page 93.

NOTE: TCCB 0, Timer Channel 0, is used internally by the local CPU to provide 
scheduling of interrupts and measurement queue data to the host processor. The host 
program may utilize this timer, but is restricted to one millisecond repetition rates for 
its use.

Table 3-14   Channel Control Block Registers

Variable Name Offset

Channel Control Blocks (24) $0010 to $0180

Table 3-15   Timer Channel Control Block Registers

Variable Name Offset

Timer Channel Control Blocks (6) $0190 to $01F0
57



   3 VMIVME-2540 Intelligent Counter/Controller
VMIVME-2540 Continuous/Discrete Flag Buffer

The continuous/discrete flags buffer contains a byte-length flag for each of the 
channels (maximum of 24). This buffer is used by the local CPU to store the 
measurement mode of each active channel. The contents of this buffer should not be 
modified by the user or erratic channel measurement operation will result. The local 
CPU stores the continuous/discrete flag for the channel from location $000B when the 
user sends the command for a selected channel. This flag is used by the local CPU to 
control the internal operations during its channel-by-channel processing operations.

VMIVME-2540 Measurement Data Valid Flags Buffer

The measurement data validity flags are stored in a buffer of 24 bytes, one byte for 
each channel. This flag indicates that the measurement data stored in the associated 
channel’s CCB is valid. The flag is cleared ($00) to indicate that the associated 
channel’s measurement data is invalid (a measurement data update is eminently 
(within 2 µs pending). The host processor may read this flag to determine if the 
measurement data can be read. See Programming Strategies for Input Operations on page 
89 for more information.

VMIVME-2540 Firmware Release Information

The firmware release information (Table 3-18 below) contains the firmware revision 
level, release status, and release date as ASCII strings (revision 1.24 and above). This 
information should be used when contacting VMIC Customer Support for product 
support. 

Table 3-16  VMIVME-2540 Continuous/Discrete Flag Buffer

Variable Name Offset

Continuous/Discrete Flags $01F0 to $0207

Table 3-17  VMIVME-2540 Measurement Data Valid Flags Buffer

Variable Name Offset

Measurement Data Valid Flags $0208 to $021F

Table 3-18  VMIVME-2540 Firmware Release Information 

Variable Name Offset

Firmware Rel. Information $03E0 to $03FF
58



VMEbus Interface Memory Map 3
VMIVME-2540 Daignostic Buffer

If the front panel Fail LED illuminates at any time after initial powerup/reset, the 
local CPU is generally in a halt state and will no longer respond to host processor 
commands. The only action to recover from this condition is to activate the front panel 
reset switch (or activate the VMEbus reset) to reset the board. Refer to Auxiliary 
Commands on page 100 for other uses of the diagnostic buffer.

NOTE: The user should not write to this area: value initialized/used by local CPU.

Table 3-19  VMIVME-2540 Diagnostic Buffer

Variable Name Offset

Diagnostic_Buffer $0400 to $3FFF
59



   3 VMIVME-2540 Intelligent Counter/Controller
Command Interface

The VMIVME-2540 processor recognizes 39 different VMEbus host commands as 
shown in Table 3-20 below. These commands control the operational modes of the 
VMIVME-2540 listed in Modes of Operation on page 64. In addition, commands 
provide miscellaneous functions for board initialization, limited debug, development, 
and data collection operations. The table also denotes the applicability of the IRQ/
vector and clock/edge select parameters for each of the commands. An entry of X 
denotes use of the parameters by the local CPU for the associated operation mode. For 
those entries not denoted by X, the parameters are not used and the associated CCB 
entry locations should be treated as Reserved by the user. The selection of commands 
other than those presented in Table 3-20, or the use of the reserved commands, will 
result in the return of a Request Denied ($13) error code in the Command Status 
register.

Table 3-20  VMIVME-2540 Host Commands

Command Description IRQ/VEC Gate/Edge

$00 Disable Channel X

$01 16-bit Event Counter X

$02 16-bit Event Counter with Gate X X

$03 32-bit Event Counter X

$04 32-bit Event Counter with Gate X X

$05 Reserved

$06 Read Event Counter X

$07 16-bit Frequency Divider

$08 32-bit Frequency Divider

$09 Square Wave Generation

$0A Pulse Train Generation

$0B Frequency Generation

$0C Duty Cycle Generation

$0D 16-bit Period Measurement X

$0E Enhanced 16-bit Period Measurement X

$0F 16-bit Frequency Measurement X

$10 Enhanced 16-bit Frequency Measurement X

$11 16-bit Pulse-Width Measurement X

$12 Enhanced 16-bit Pulse-Width Measurement X

$13 Quadrature Position Measurement X

$14 Reserved

$15 Read Quadrature Position X

$16 Integer Quadrature Position Measurement X

$17 Read Integer Quadrature Position X

$18 16-bit Timer X

$19 16-bit Timer with Restart X

$1A Disable Timer X
60



Command Interface 3
Programming Using the Command Interface

The following steps are required for host programming using the VMIVME-2540 
command interface. These steps will ensure proper synchronization and operation of 
the board.

Initialize the parameters for the selected channel in the channel CCB.

For measurement commands, select the desired measurement mode by writing a $00 
for discrete measurement (or $FF for continuous mode) to offset $000B. This 
parameter is used only for input operations.

Select the channel to be used by writing the channel number to the channel ID at offset 
$000A.

Send the clear status command code (write $001C to offset $0004).

Verify that the command status is cleared by reading $00 at offset $0007. See the 
description of the command status code for proper access of the command status data.

Send the command for the desired operation (that is, for an event count measurement, 
write $0001 to offset $0004).

If polling is used, verify that the command processing is completed by reading the 
command status until a nonzero command status is retrieved (using the access 
methodology previously described). If the command status interrupt is used, wait for 
the command status interrupt, and perform a single read to the command status word 
(or byte).

Process the command status code to detect any error that may have occurred during 
command processing by the VMIVME-2540 CPU. A command acknowledge command 
status code will indicate a successful command operation. There are exceptions to this 
command status code for error-free processing. See Command Descriptions on page 70,  
for detailed information. After the host processing is completed for output operations, 

Command Description IRQ/VEC Gate/Edge

$1B Initialize

$1C Reset Command Status X

$1D Block Move X

$1E Jump To (Execute)

$1F Echo PC

$20 Integer Period Measurement X

$21 Pulse Sequence Generation X

$22 Programmed Output

$23 Quadrature Position Control X

$24 Group Acquisition - Integer QPM X

$25 Event-Triggered VMEbus Timer X X (edge)

$26 16-bit Integer Pulse-Width Measurement X X

$27 32-bit Integer Period Measurement X X

$28 32-bit Integer Pulse-Width Measurement X X

Table 3-20  VMIVME-2540 Host Commands (Continued)
61



   3 VMIVME-2540 Intelligent Counter/Controller
output signals will be active with the signal selected by the command code and CCB 
parameter list.

For measurement operations, the counter(s) for the selected channel will be active 
with the measurement selected by the command and CCB parameter list for that 
channel after the command acknowledge status code is received by the host program. 
For the read... commands, the command status code will return a ...ready command 
status if there are no errors during command processing.
62



Command Status Codes 3
Command Status Codes

The VMIVME-2540 local CPU responds to VMEbus commands with status codes 
relevant to the commanded action as shown in Table 3-21 below. These status codes 
are described in Modes of Operation on page 64 with the corresponding mode of 
operation. These codes are applicable for both command status and channel status 
conditions. However, some of the commands, such as command acknowledge are 
applicable only to command write operations by the host. Other commands are 
applicable only for channel status reporting. Command and channel columns of 
Table 3-21 indicate the applicability of the status codes. A nonzero command status 
code is always returned in the command status byte ($0007) in response to a host 
write operation to the command code register ($0004) with the exception of the clear 
command status command which returns a zero. 

The command status code provides the primary synchronization method between the 
host program and the VMIVME-2540 by always providing a nonzero status code 
when the command processing is completed for the command sent by the host 
program. Failure to wait for a command status word for each command sent can 
result in fatal errors occurring during command processing by the VMIVME-2540 
local CPU.

NOTE: ** Returned as a status code with a valid measurement. Indicates a higher 
resolution is obtainable and  ranging is active.

Table 3-21  VMIVME-2540 Status Codes

Code Status Description Command Channel

$00 NULL Yes Yes

$01 Command Acknowledge Yes No

$02 Event Count Ready Yes Yes

$03 Period Measurement Ready No Yes

$04 Frequency Measurement Ready No Yes

$05 Pulse-width measurement Ready No Yes

$06 Quadrature Position Measurement Ready Yes Yes

$07 Limit Alarm No Yes

$08 Timer Alarm No Yes

$09 Channel Allocation Error Yes No

$0A Bounds Error Yes No

$0B Period Error Yes No

$0C Pulse width Error Yes No

$0D Frequency Error Yes No

$0E Scale Error Yes Yes

$0F Reserved No No

$10 Gate Error Yes No

$11 Limit Error Yes No

$12 Active Channel Error Yes No

$13 Request Denied Yes No

$14 Under-Range** No Yes
63



   3 VMIVME-2540 Intelligent Counter/Controller
Modes of Operation

The VMIVME-2540 supports several modes of input, output, and timing operations. 
Input operations perform measurements of the user’s bi-level input signals. The 
output mode of operations provide the bi-level, time-based signal generation 
capabilities of the board, bi-level, time-based output signals as a function of user’s 
input signal, and the timing operations provide periodic time-based events for the 
host processor. 

Each channel’s mode of operation is controlled via the entry of parameters into the 
channel’s control block and the writing of the command to invoke the selected mode 
of operation.

The signal generation and measurement modes may require either a clock input 
signal, a gate input signal, and/or output connections to the associated channel(s) on 
the front panel connectors (P3 and P4). Those operations that utilize these signal 
(external clock, gate, and output) connections are shown in Table 3-22 below. 
Operations which do not require any external connection (timer operations) are not 
shown. For some signal generation operations, an output connection is not required 
for the channel to operate in the selected mode; the channel output is assumed to be 
connected to either a channel on the board (clock or gate), to the user’s field 
equipment, or not connected. See Command Descriptions on page 70 for the connection 
requirements for the operational modes.

Table 3-22  Front Panel External Clock, Gate, and Output Connections

Command Clock Gate Output

16-bit Event Counter X

16-bit Event Counter with Gate X X

32-bit Event Counter X

32-bit Event Counter with Gate X X

16-bit Frequency Divider X X

32-bit Frequency Divider X X

Square Wave Generation X

Pulse Train Generation X

Frequency Generation X

Duty Cycle Generation X

16-bit Period Measurement X

Enhanced 16-bit Period Measurement X

16-bit Frequency Measurement X

Enhanced 16-bit Frequency Measurement X

16-bit Pulse-Width Measurement X

Enhanced 16-bit Pulse-Width Measurement X

Quadrature Position Measurement X

Integer Quadrature Position Measurement X

16-bit Integer Period Measurement X

16-bit Integer Pulse-Width Measurement X

Pulse Sequence Mode X X

Programmed Output X

Quadrature Position Control X X

Group Acquisition X
64



Modes of Operation 3
Some input and output operations require multiple channels. All 32-bit input 
operations and the enhanced period, pulse width, and frequency measurement 
operations require two channels. The quadrature position control operation requires 
four channels. All multiple channel operations require that contiguous channels be 
used and that the lower channel of the channel pair is even. The four-channel QPC 
operation requires four contiguous channels and the lower channel must be on a 
modulo 4 boundary; that is, 0, 4, 8, 16, etc. The lower channel is always used as the 
channel ID for issuing commands which utilize multiple channels.

Input Modes of Operation

a. Integer Event Counter with Programmable Limit Count:

1. 16-bit unsigned integer event counter, no level gating, automatic restart.

2. 16-bit unsigned integer event counter, level gating, automatic restart.

3. 32-bit unsigned integer event counter, no level gating, halt at limit; requires two 
counters.

4. 32-bit unsigned integer event counter, level gating, halt at limit; no interim count 
available; requires two channels.

b. Floating-Point Period/Frequency Measurement: Internal time base: resolution
ranges {0.2 ms, 2 ms, 20 ms, 200 ms, 2 ms}.

1. 16-bit counter with N-sample averaging; from 400 ns minimum period with    
200 ns resolution to 131 s maximum period with 2 ms resolution.

2. 16-bit counter with 16-bit prescaler and N-sample averaging requires two 
counters, 858.9 second maximum period with 0.2 µs resolution; requires two 
contiguous channels.

c. Floating-Point Pulse-Width Measurement:

1. 16-bit counter with N-sample averaging and autoranging; from 400 ns minimum 
pulse width with 200 ns resolution to 131 s maximum pulse width with 2 ms 
resolution.

2. 16-bit counter with 16-bit prescaler and N-sample averaging requires two 
counters, 858.9 second maximum pulse width with 0.2 µs resolution; requires 
two contiguous channels.

d. Floating-Point Quadrature Position Measurement: User-specified floating-point
scale factor, 1/4 wave resolution, 32-bit counter with user-specified CW/CCW
limits. 

1. Sin/Cos Quadrature inputs; requires two contiguous channels.

Command Clock Gate Output

Delayed Event Timer X

32-bit Integer Period Measurement X

32-bit Integer Pulse-Width Measurement X

Table 3-22  Front Panel External Clock, Gate, and Output Connections (Continued)
65



   3 VMIVME-2540 Intelligent Counter/Controller
e. Integer Quadrature Position Measurement: 1/4 wave resolution, 32-bit two’s
complement data format, overflow alarm interrupt, requires two contiguous
channels.

f. 16-bit Integer Period Measurement: 16-bit unsigned counter with internal time
base, autoranging, or specified clock source.

g. Group Acquisition: Acquires two integer QPM measurements simultaneously,
requires four contiguous channels.

h. 16-bit Integer Pulse-Width Measurement: 16-bit unsigned counter with internal
time base, autoranging, or user-selected clock period.

i. 32-bit Integer Period Measurement: 32-bit unsigned counter with user-selected
clock period, requiring two contiguous channels.

j. 32-bit Integer Pulse-Width Measurement: 32-bit unsigned counter with user-
selected clock period, requiring two contiguous channels.

k. Time-Delayed Event with VMEbus Interrupt: Generates a VMEbus interrupt on
receipt of an edge input. The interrupt is delayed by a user-selectable time of 200 to
13.2 ms. It is specified in 16-bit floating-point. Repetitive operation is available
using the automatic restart flag.

Output Modes of Operation

a. 16-bit Frequency Divider:

1. Generates an output signal as a function of an input signal.

2. User-selected 16-bit unsigned integer frequency divisor between 2 and 65,535.

b.  32-bit Frequency Divider:

1. Generates an output signal as a function of an input signal.

2. User-selected 32-bit unsigned integer frequency divisor between 2 and 
4,294,967,295, external supplied gate; requires two contiguous channels.

c. Period Pulse-Width Generation Frequency/Duty Cycle Generation: 16-bit
counter with internal time base: 1 ms minimum/131.1 s maximum period. 

d. Pulse Sequence Mode: 16-bit integer specification of period, pulse width, and
number of pulses; interrupt upon completion; requires two contiguous channels.

e. Programmed Output: Simple digital output capability.

f. Quadrature Position Control: Generation of sequence of pulses in quadrature; user
specifies clock source, 16-bit integer pulse width, and 16-bit two’s complement
quadrature position delta; requires four contiguous channels.

Timing Modes of Operation

a. Timer/Periodic Interrupt: Internal time base, 1 ms minimum/131.1 s maximum
period. 

1. 16-bit timer: Interrupts VMEbus host after terminal count.

b. 16-bit Periodic Interrupt: Same as 16-bit timer with automatic restart.
66



Modes of Operation 3
Channel Control Blocks Common Parameters

The channel control block structure for the VMIVME-2540 is shown in Table 3-23 
below with locations shown for some of the parametric entries for the VMEbus IRQ/
vector codes, edge/gate codes, and clock period select codes which are common for 
some, but not all, operations supported by the VMIVME-2540. (The parameter’s 
locations may also differ for some operations requiring these entries in the CCB.) For 
those operations which use these common parameters (denoted by X in Table 4.3-1), 
the format is identical for the channel control block entries and the codes entered. The 
position of the clock period select and gate/edge codes may vary for some operations, 
primarily for operations which require both parameters. For the applicable 
operations, the selected channel CCB is initialized with the desired VMEbus IRQ/
vector codes, gate/edge codes, clock period selects, and all other parameters 
applicable before issuing a channel command by writing to the command code. 
Reserved locations in the CCBs should not be modified by the user or else the 
operation of the corresponding channel will be unpredictable. The information 
contained in the Reserved locations should not be used for host program processing 
flow control (Exception: The first location of the CCB will always contain the 
command code after successful completion of the commanded operation. This 
location may be read by the host program to determine an active/inactive channel 
status. This methodology should not be used in lieu of channel status verification for 
verifying successful command processing by the VMIVME-2540.) Observing these 
rules will ensure host software compatibility with future enhancements or upgrades 
to the VMIVME-2540 product. The gate/edge code has four possible values for user-
selection of active gate and clock input signals, as shown in Table 3-24 on page 68. The 
VMEbus IRQ/vector byte locations have the same format as the command status IRQ 
and command status vector bytes described earlier. The VMEbus IRQ for a channel 
control block may be enabled by setting bit 3 of the IRQ location to one and disabled 
by clearing bit 3, or simply filling the IRQ location with $00.

The clock period select codes control the time base for some, but not all, of the 
VMIVME-2540 input and output operations. The available clock periods supported 
by the board and their associated codes are shown in Table 3-25 on page 68.

Table 3-23  Typical CCB Format/Common Parameters

Offset Function

$00 Reserved

$01 Clock Period Select or Gate/Edge Code

$02 VMEbus IRQ

$02 VMEbus Vector

$04 to $0F Parameter List/Channel Status
67



   3 VMIVME-2540 Intelligent Counter/Controller
Operation Mode Selection Flag

The following input functions permit the user to select the mode of operation for the 
function:

• Floating-point period, pulse width, and frequency measurement
• Enhanced floating-point period, pulse width, and frequency measurement
• 16-bit integer period and pulse-width measurement
• 32-bit integer period and pulse-width measurement

The CCBs for these operations use an Operational Mode Select Flag.  Normally when a 
counter receives a triggering input signal (a rising or falling edge for period and 
frequency measurement or a rising and following edge for pulse-width measurement) 
via the front panel, the counter/timer hardware will eventually overflow if this input 
is not followed by a second signal.  This will generate a terminal count local interrupt 
and disarm the counter from further counting.  This condition is normally an error 
condition, possibly indicating a loss of signal.  A scale error code ($0E) is returned 
when the counter overflow occurs.  The operational mode select can be used to notify 
the local CPU to rearm the counter, if desired.  This will result in the counter being 
rearmed and counting will continue.  Otherwise, the user must disable the associated 
channel and re-enable the channel by sending the appropriate command.  The scale 
error code will be returned for the overflow condition, regardless of the rearm mode 
of operation, and must be acknowledged by the host computer (by clearing the code) 
before further measurement ready status codes will be reported.  However, 
measurements will continue to be updated to the CCB for the channel.

Table 3-24  Gate/Edge Codes

Offset Function

$00 Active-High Gate, Rising Clock Edge

$01 Active-High Gate, Falling Clock Edge

$02 Active Low Gate, Rising Clock Edge

$03 Active-Low Gate, Falling Clock Edge

Table 3-25  Clock Period (Time Base) Select Code

Scale Code Time Base

$00 Autoranging

$01 200 ns Per Count

$02 2 µs Per Count

$03 20 µs Per Count

$04 200 µs Per Count

$05 2 ms Per Count
68



Format of the Operation Mode Select Flag: 3
Format of the Operation Mode Select Flag:

Operational Mode Select Flag

Operational Mode Flag Bit Descriptions

Bits 07 through 01: Reserved - Reserved bit are set to zero (0).

Bit 00: Auto Rearm - A zero (0) in this bit location = NO, a one in this bit location = 
YES. To set the Automatic Rearm , set the operational mode select flag to $01.

Table 3-26  Operational Mode Select Flag

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

Reserved (0) Auto.
Rearm**
69



   3 VMIVME-2540 Intelligent Counter/Controller
Command Descriptions

The following sections describe the command codes and the usage of the command 
codes for performing the operations supported by the VMIVME-2540 module.

The required front panel connections are also described for each of the commands that 
require an input signal, or the use of an output signal connection for proper channel 
operation.

Initialization and Synchronization Command Codes

A portion of the command codes provide for the initialization of the VMIVME-2540 
and individual channels. An additional command provides the host program with the 
capability to initialize the command status prior to writing the command. Command 
status interrogation provides the primary synchronization mechanism with the 
VMIVME-2540 for the host program.

Command $00: Disable Channel. The disable channel command instructs the 
VMIVME-2540 local CPU to disarm the counter(s) associated with the currently active 
command for the selected channel. The CCB(s) contents for the selected channel is 
cleared (set to zeros). This command must be issued by the user for any active channel 
before commanding any mode of operation. If the user commands a mode of 
operation for an already active channel, the VMIVME-2540 local CPU returns the 
active channel error command status code. The disable channel command may be 
issued to any channel configured for 16-bit operation. A channel pair configured for 
32-bit operation must be disabled by issuing the disable channel command to the 
lower (even) channel number. The QPC operation must be disabled by issuing the 
disable channel command to the lowest (even) channel of the four-channel group. If 
the user issues the disable channel command for other than the correct channel for an 
active multichannel operation, the VMIVME-2540 local CPU reports the channel 
allocation error status code. A disable channel command can be sent for an inactive 
(disabled) channel, and a normal command acknowledge command status will be 
returned to the host processor.

Command $1B: Initialize. This command instructs the VMIVME-2540 local CPU to 
initialize all shared memory variables and AM9513A system timing controllers to the 
same state as that which immediately follows self-test from powerup or front panel 
reset. All channels are disabled, channel outputs are set to zero, and all channel CCBs 
are cleared. The initialize command requires only milliseconds to execute and is 
appropriate for execution when a host program restart is initiated.

Command $1C: Reset Command Status Buffer. This command instructs the 
VMIVME-2540 local CPU to write $xx00 to the command status buffer, located at 
offset $0006 from the base address. As noted in the command status buffer 
description, the upper byte of the command status buffer is undefined, while the 
lower byte is cleared by this command. The response time for this command is less 
than 50 µs. This command provides the necessary synchronization with the 
VMIVME-2540 local processor when polling is used to transfer commands. Proper 
command-to-command status sequencing requires that the reset command status 
command be issued first, then the command status buffer be verified for a zero value. 
The desired operational command is then issued to the VMIVME-2540, and a 
command status is verified by reading a nonzero status, followed by a second read 
which is verified to match the previous nonzero read. This loop should be repeated 
70



Command Descriptions 3
until matching nonzero data is detected on consecutive accesses, and generally the 
reread match will occur on the second attempt. This method will avoid transition data 
problems due to the nonarbitrated operation of the command status buffer.

Channel Input/Measurement Command Codes

The following sections describe the input operations of the VMIVME-2540 counter 
timer board. The operations were designed to function strictly for the acquisition of 
data via the front panel. However, the counters configured to support these 
operations will generally have an associated pulse output signal at the P3/P4 output 
pins. This signal may or may not have a useful function for the user’s application. 

Integer 16-bit Event Counting

The 16-bit event counter CCB, shown in Table 3-27 below, requires the host to 
initialize the gate/edge code, IRQ/Vector, and limit count parameters prior to writing 
the event counter command code for the selected mode of operation. All signal rising 
(or falling) edges will be counted for this command. The local CPU configures the 
counter of the selected channel for counting. Counting then proceeds independent of 
the local CPU after counting is enabled, and the count is accumulated in the internal 
counter of the AM9513A. The internal counter value is read via the local CPU using 
either the continuous measurement mode (Continuous Data Acquisition Mode on page 
90) or the read event count command (Integer 32-bit Event Counting on page 72, 
Command $06). If the event count reaches the limit count value and the VMEbus IRQ 
is enabled, the VMIVME-2540 local CPU asserts the IRQ level specified by the CCB. If 
the VMEbus IRQ is not enabled and the limit count value is reached, the 
VMIVME-2540 local CPU posts the limit alarm code to the local message queue and to 
the CCB status byte. The 16-bit event counter modes automatically restart counting 
when the limit count is reached. Exception: Event counting with a limit count of one 
will not restart; only a single VMEbus interrupt will be generated, if enabled. Use 
Event-Triggered VMEbus timer with minimum time delay instead for single-event 
with automatic restart.

NOTE: Event count measurements are available only via the read event count 
command (Integer 32-bit Event Counting on page 72) or the continuous measurement 
mode. The measurement queue and the interrupt events are used only for limit status 
reporting.

Table 3-27  16-bit Event Counter Channel Control Block

Offset Function

$00 Reserved

$01 Gate/Edge Code

$02 VMEbus IRQ

$03 VMEbus Vector

$04 16-bit Limit Count

$06 16-bit Current Count

$08 to $0B Reserved

$0C Channel Status

$0D to $0F Reserved
71



   3 VMIVME-2540 Intelligent Counter/Controller
Command $01: 16-bit Event Counter, No Level Gating. The VMIVME-2540 local CPU 
configures the indicated channel for event counting with indicated clock edge and no 
level gating. The counter will count up until the limit count is reached at which time 
the limit alarm will be placed in the measurement queue and the CCB channel status 
byte. The counter will then restart event counting from zero. The continuous 
measurement mode is available for this command and will return the event count ready 
status to the CCB channel status byte as event counts are placed in the current count 
word location of the CCB. 

NOTE: If the event counter limit alarm status is placed in the CCB channel status byte, 
the user must acknowledge the alarm condition (by clearing the status byte) before 
any subsequent event count ready status will be reported in the CCB channel status 
byte. The current count will continue to be updated in the continuous measurement 
mode if the limit alarm is not acknowledged by the host processor.

Command $02: 16-bit Event Counter, Level Gating. The VMIVME-2540 local CPU 
configures the indicated channel for event counting with indicated clock edge and 
level gating. Continuous measurement mode is available for this command (see 
above).

Front Panel Input Signal Connections: The event count signal is connected to the 
clock input of the desired channel with the event gate signal (command $02 only) 
attached to the corresponding gate input.

Integer 32-bit Event Counting

The parameter list for the 32-bit event counter CCB contains a 32-bit unsigned integer 
limit count supplied by the user prior to the command interrupt, and a 32-bit 
unsigned integer current count value returned by the VMIVME-2540 local CPU in 
response to a Read Counter command. This CCB format is shown in Table 3-28 on 
page 73. The 32-bit event counter command may be issued for even channels only: 
channels 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. If the user commands a 32-bit event 
counter mode for an odd channel number, the VMIVME-2540 local CPU gives the 
channel allocation error command status code. 

For a channel pair to be successfully set up for the 32-bit counting modes, both the 
even and next higher odd channels must first be inactive (disabled). If the user 
commands a 32-bit event counter mode for a channel pair which has not previously 
been disabled, the VMIVME-2540 local CPU gives the channel allocation error 
command status code. 

The 32-bit limit count must be a quantity greater than 65,536. If the 32-bit limit count 
is 65,536 or less, the VMIVME-2540 local CPU gives the bounds error status code. If the 
event count reaches the limit count value and the VMEbus IRQ is enabled, the 
VMIVME-2540 local CPU asserts the IRQ level specified by the CCB. If the VMEbus 
IRQ is not enabled and the limit count value is reached, the VMIVME-2540 local CPU 
posts the limit alarm code to the local message queue and to the channel status byte. 
The 32-bit event count operation does not automatically restart upon reaching limit 
count value. 
72



Command Descriptions 3
Command $03: 32-bit Event Counter, No Level Gating. The VMIVME-2540 local CPU 
configures the indicated channel pair for 32-bit event counting with indicated clock 
edge and no level gating. This mode of operation counts events until the limit count is 
reached, after which the counter pair is disabled. Continuous measurement mode is 
available for this command with event count ready status reported in the CCB status 
byte as measurements are updated by the local CPU. 

NOTE:  The limit alarm channel CCB status will override subsequent event count ready 
status code reporting until the alarm status is acknowledged by the host program (by 
clearing the limit alarm status code in the CCB channel status).

Command $04: 32-bit Event Counter, Level Gating. The VMIVME-2540 local CPU 
configures the indicated channel pair for 32-bit event counting with indicated clock 
edge and level gating. This mode of operation counts events while the gate is active 
(as selected by the gate/edge code) and disregards events when the gate is inactive. 
Counting will continue until the limit count is reached, after which the counter pair is 
disabled. Continuous measurement mode is available for this command. However, 
the internal counter contents cannot be read when a gating signal is used, hence the 
event count will always contain zero, and the user will only be able to detect a limit 
alarm via the CCB channel status.

Command $05: Reserved.

Command $06: Read Event Count. For channels configured by commands $01 
through $04 only, the current count of the selected channel is read and returned into 
the current count variable of the CCB. The command status buffer and the CCB 
channel status is loaded with the event count ready command status code and the 
VMEbus IRQ and vector are placed in the VMEbus interrupt queue if nonzero. The 
32-bit event counter with gating enabled does not allow the current count value to be 
read due to the limitations of the AM9513A system timing controller modules. 
Minimum data transport lag is approximately 100 µs.

Front Panel Input Signal Connections: The event count signal is connected to the 
clock input of the lower (even) channel and the (optional) event gate signal is 
connected to that channel’s gate input.

Table 3-28  32-bit Event Counter Channel Control Block

Offset Function

$00 Reserved

$01 Gate/Edge Code

$02 VMEbus IRQ

$03 VMEbus Vector

$04 32-bit Limit Count

$08 32-bit Current Count

$0C Channel Status

$0D to $0F Reserved
73



   3 VMIVME-2540 Intelligent Counter/Controller
Period Measurement

This CCB format is shown in Table 3-29 on page 75. The parameter list for the period 
measurement CCB contains a clock select code, VMEbus IRQ and interrupt vector, 
average value, and a 32-bit IEEE-754 floating-point period measurement value. The 
clock select is used to select the clock period to be used during 16-bit period 
measurement, as shown in Table 3-25 on page 68. 

If the clock select code contains any value other than those listed in the above table, 
the VMIVME-2540 local CPU returns the scale error command status code. The 
autoranging mode will result in the local CPU varying the time base to obtain the best 
resolution for the period measured. The autoranging process is repeated for each new 
measurement and is initiated with the highest resolution clock selection (200 ns.).  The 
use of autoranging will increase the data transport lags for the measurements 
accordingly. If the period of the input signal results in a counter overflow for the 
selected clock (or the 2 ms clock for autoranging), the VMIVME-2540 local CPU places 
the scale error code in the CCB channel status at offset $0C, and will queue the 
VMEbus IRQ for delivery, if enabled. For discrete measurements, if a period 
measurement error occurs, scale error and corresponding channel ID are placed in the 
local measurement queue, if the VMEbus IRQ is disabled. The clock select code is not 
used for enhanced 16-bit period measurement. The sample size for the average value, 
N, has the range of values 0 to 65,535 ($0000 to $FFFF). Sample size zero (0) has the 
same effect as one (1), measuring the signal period only once.

The enhanced 16-bit period measurement mode requires two channels and can only 
be commanded for even channels: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. If the user 
commands enhanced 16-bit period measurement for an odd channel number, the 
VMIVME-2540 local CPU gives the channel allocation error response code. Both the 
even channel and the next higher odd channel must be inactive (disabled) for a 
channel pair to be successfully set up for enhanced 16-bit period measurement. If the 
user commands enhanced 16-bit period measurement for a channel pair and either 
channel is active, the VMIVME-2540 local CPU gives the channel allocation error 
response code.

The time base for enhanced 16-bit period measurement is the internal 5 MHz STC 
clock. The lower (even) counter of the channel pair is a 16-bit prescaler which clocks 
the upper (odd) counter of the channel pair, permitting the user to establish the clock 
period for the period measurement (autoranging is not used for the enhanced mode 
of operation since the user controls the clock period via the prescaler selection). The 
user may specify prescaler values ranging from 2 through 65,535. This will yield a 400 
ns resolution for periods up to 26.2 ms using a prescalar of 2 and 13.1 ms resolution 
for periods up to 858.97 s using a prescalar value of 65,535.

 

74



Command Descriptions 3
Command $0D: 16-bit period measurement, N-sample size average. After N-
measurements, the VMIVME-2540 local CPU converts the accumulated value into 
IEEE-754 format, divides by N, places the quotient in the period value location, places 
the period measurement ready status in the CCB and queues the host VMEbus interrupt 
for delivery (if enabled). Continuous measurement mode is available for this 
command.

Front Panel Input Signal Connections: The input signal is connected to the gate 
input of the selected channel.

Command $0E: 16-bit enhanced period measurement, N-sample size average. The 
user specifies the number of 5 MHz clock cycles in the enhanced 16-bit prescalar 
location of the CCB, writes the IRQ/vector, the sample size, and clears the channel 
status prior to writing the code to the command word (or byte). After 
N-measurements, the VMIVME-2540 local CPU converts the accumulated value into 
IEEE-754 format, divides by N, places the quotient in the period value location, places 
the period measurement ready status in the CCB, and queues the host VMEbus interrupt 
for delivery (if enabled). Continuous measurement mode is available for this 
command.

Front Panel Input Signal Connections: The input signal is connected to the gate 
input of the upper (odd) channel of the channel pair.

Frequency Measurement

The CCB format for this measurement is shown in Table 3-30 on page 76. The 
parameter list for the frequency measurement CCB contains a scale code, VMEbus 
IRQ and interrupt vector, average value, and a 32-bit IEEE-754 floating-point 
frequency value. The scale code for 16-bit frequency measurement may take on the 
values specified in Table 3-25 on page 68 with the same restrictions described for 
period measurement. If there is a time base-related error in initiating frequency 
measurement, the frequency error status code is returned for the command status. The 
sample size parameter N has the range of values 0 through 65,535 ($0000 through 
$FFFF). Sample size 0 has the same effect as 1, measuring the signal period only once.

Table 3-29  Period Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Clock Select Code ($00 to $05)

$02 VMEbus IRQ

$03 VMEbus Vector

$04 Sample Size for Average Value (16-bit Integer)

$06 Reserved

$08 to $0B 32-bit IEEE-754 Floating-Point Period Measurement (seconds)

$0C Channel Status

$0D Operational Mode Select Flag (page 69)

$0E Enhanced 16-bit Prescaler

$0F Reserved
75



   3 VMIVME-2540 Intelligent Counter/Controller
The enhanced 16-bit frequency measurement mode allows the user to select the clock 
period for the measurement, ranging from 400 ns to 131.1 ms, using prescalar codes 
between 2 and 65,535. Enhanced frequency measurements require two channels and 
can only be commanded for even channels: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. 
Commanding enhanced 16-bit frequency measurement for an odd channel will result 
in a channel allocation error for the command status. 

Command $0F: 16-bit frequency measurement, N-sample size average. After N-
measurements, the VMIVME-2540 local CPU converts the accumulated value into 
IEEE-754 format, divides N by the sum, places the quotient in the frequency result 
location, places the frequency measurement ready status in the CCB and queues the host 
VMEbus interrupt for delivery (if enabled). Continuous measurement mode is 
available for this command.

Front Panel Input Signal Connections: The signal to be measured is connected to the 
gate input of the selected channel.

Command $10: Enhanced 16-bit frequency measurement, N-sample average. After N-
measurements, the VMIVME-2540 local CPU converts the accumulated value into 
IEEE-754 format, divides N by the sum, places the quotient in the frequency result 
location, places the frequency measurement ready status in the CCB, and queues the host 
VMEbus interrupt (if enabled). Continuous measurement mode is available for this 
command.

Front Panel Input Signal Connections: The signal to be measured is connected to the 
gate input of the upper (odd) counter of the channel pair.

Pulse-Width Measurement

This CCB format is shown in Table 3-31 on page 77. The parameter list for the pulse-
width measurement CCB contains a scale code, VMEbus IRQ and interrupt vector, 
sample size value, and a 32-bit IEEE-754 floating-point pulse width value. The time 
base scale code for 16-bit pulse-width measurement can take on the values specified 
in Table 3-25 on page 68 with the same restrictions described for the period 

Table 3-30  Frequency Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Time Base Scale Code

$02 VMEbus IRQ

$03 VMEbus Vector

$04 Sample size for average value (16-bit integer)

$06 Reserved

$08 to $0B 32-bit IEEE-754 Floating-Point Frequency Measurement (Hz)

$0C Channel Status

$0D Operational Mode Select Flag (page 69)

$0E Enhanced 16-bit Prescaler

$0F Reserved
76



Command Descriptions 3
measurement. If there is a time base-related error in measuring the pulse width, the 
pulse width error code is returned. The sample size value N has the range of unsigned 
integer values 0 through 65,535 ($0000 to $FFFF). Sample size 0 has the same effect as 
1, measuring the signal period only once.

The enhanced 16-bit pulse-width measurement mode may be commanded only for 
even channels: 0, 2, 4, 6, 8,10, 12, 14, 16, 18, 20, and 22. The prescalar parameter has the 
same attributes and effect as that for period and frequency measurements. 
Commanding enhanced 16-bit pulse-width measurement for an odd channel will 
result in a command status code of channel allocation error.

Command $11: 16-bit Pulse-Width Measurement, N-sample size average. After 
collecting N-samples, the VMIVME-2540 local CPU transforms the accumulated value 
into IEEE-754 format, divides by N, places the quotient in the period result location, 
places the pulse width ready status in the CCB and queues the host VMEbus interrupt 
for delivery (if enabled). Continuous measurement mode is available for this 
command.

Front Panel Input Signal Connections: The signal to be measured is connected to the 
gate input of the selected channel.

Command $12: Enhanced 16-bit Pulse-Width Measurement, N-sample average. After 
collecting N-samples, the VMIVME-2540 local CPU converts the accumulated value 
into IEEE-754 format, divides by N, places the quotient in the period result location, 
places the pulse width ready status in the CCB, and queues the host VMEbus interrupt 
for delivery (if enabled). Continuous measurement mode is available for this 
command.

Front Panel Input Signal Connections: The signal to be measured is connected to the 
gate input of both counters of the channel pair.

Table 3-31  Pulse-Width Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Time Base Scale Code

$02 VMEbus IRQ

$03 VMEbus Vector

$04 Sample Size Value (16-bit Integer)

$06 Reserved

$08 to $0B 32-bit IEEE-754 Floating-Point Pulse-Width Measurement (seconds)

$0C Channel Status

$0D Operational Mode Select Flag (page 69)

$0E Enhanced 16-bit Prescaler

$0F Reserved
77



   3 VMIVME-2540 Intelligent Counter/Controller
Quadrature Position Measurement 

The CCB format for quadrature position measurement is shown in Table 3-32 on page 
79. Quadrature position measurement requires two consecutive channels for 
operation with a clockwise input signal on the even channel and a counterclockwise 
input signal on the odd channel. The direction sense of the measurement is 
determined by the quadrature relationship of the input signals. When the even 
channel leads the odd channel, the direction is defined to be clockwise. For 
nonrotational position measurement, this direction may alternately be defined as 
forward, up, left, or right as dictated by the linear application. In the following 
discussion of angular scale factors, clockwise and counterclockwise limit angles, the 
units of measurement apply equally to linear motion by substituting units of distance. 
The QPM channel control block is shown in Table 3-32 on page 79.

The VMIVME-2540 has front-end logic for processing quadrature position clock 
inputs. Each edge of the clock inputs creates a clock pulse which is steered by the 
direction indicator. Clockwise motion creates four clockwise pulses for each period of 
the clock inputs and no counterclockwise pulses. Similarly, counterclockwise motion 
creates four counterclockwise pulses for each period of the clock inputs and no 
clockwise pulses. The effect of the STC front-end logic is to multiply by four the 
resolution of the external quadrature encoder. Since all inputs to the VMIVME-2540 
are synchronized to the 5 MHz time base, the maximum frequency of the quadrature 
input signals must be less than 1.25 MHz for reliable operation.

Two 16-bit counters in the AM9513A STC record the clockwise and counterclockwise 
pulses generated by the front-end logic. These 16-bit hardware counters are 
augmented by 16-bit software counters using variables in local CPU memory. Absolute 
position is calculated by subtracting the counterclockwise 32-bit count from the 
clockwise 32-bit count and converting the result to floating-point format using the 
quadrature scale factor. Limit checking is performed on the 32-bit difference count 
using values derived from the user-supplied clockwise and counterclockwise limits. 
When a limit is exceeded, the VMIVME-2540 local CPU writes the corresponding limit 
code to CCB channel status at offset $01 and asserts the VMEbus interrupt from the 
CCB, if enabled. If the VMEbus interrupt IRQ is not enabled, the limit alarm status 
code is posted to the message queue with the corresponding quadrature channel 
number. Table 3-33 on page 79 shows the QPM limit and overflow codes which may 
be returned to the user in the CCB channel status.

Since the quadrature position is not recorded with an up-down counter, the possibility 
exists that jitter at the quadrature encoder shaft will cause repetitive direction changes 
and succeeding trains of clockwise and counterclockwise clock pulses. In this case, 
each 32-bit count variable would be incremented until overflow occurred. The 
VMIVME-2540 local CPU detects this case and normalizes the two 32-bit count 
variables by subtracting the smaller count from the larger count, then clearing the 
smaller count. A 32-bit quadrature position overflow can also occur as a result of 
continuous rotation (or translation) in either direction. When the overflow condition 
occurs, the VMIVME-2540 local CPU writes the corresponding overflow code to CCB 
channel status at offset $01 and queues the VMEbus interrupt specified in the CCB, if 
enabled. If the VMEbus interrupt IRQ is not enabled, the limit alarm message is posted 
to the message queue with the corresponding quadrature channel number.
78



Command Descriptions 3
Command $13: Quadrature Position Measurement. The user initiates quadrature 
position measurement for a given channel pair by first writing the 32-bit floating-
point scale factor, clockwise limit angle, and counterclockwise limit angle values to 
the lower (even) channel control block. For example, an encoder which outputs 7200 
pulse/revolution a scale factor of 0.05 would be used (360 degrees/7200 pulses). If a 
limit alarm was desired at 225 degrees, regardless of the rotational direction then 
225.0 and 135.0 degrees would be entered for the clockwise and counter clockwise 
limit values, respectively. 

If a host processor interrupt is desired whenever a limit is exceeded or 32-bit overflow 
occurs, the VMEbus IRQ and vector are also initialized in the channel control block. 
The user next writes the lower (even) channel ID code to the channel ID variable and 
issues the QPM command to the VMIVME-2540 local CPU. When the command 
acknowledge command status code is returned, quadrature position measurement is 
active for the indicated channel pair at absolute position zero. Continuous 

Table 3-32  QPM Channel Control Block

Offset Function

$00 Reserved

$01 Channel Status

$02 VMEbus IRQ

$03 VMEbus Vector 

$04 32-bit Floating-Point Scale Factor

$08 32-bit Clockwise Limit Angle

$0C 32-bit Counterclockwise Limit Angle

$10 Reserved

$11 Direction Indicator

$12 to $13 Reserved

$14 32-bit Floating-Point Current Angle

$18 to $1F Reserved

Table 3-33  QPM Channel Status Codes

Code Description

$01 Clockwise 32-bit Overflow

$02 Counterclockwise 32-bit Overflow

$03 Clockwise Limit Exceeded

$04 Counterclockwise Limit Exceeded
79



   3 VMIVME-2540 Intelligent Counter/Controller
measurement mode is available for this command. Any limit alarm/overflow status 
must be acknowledged by clearing the alarm status in the channel status byte or 
further QPM ready status codes will not be reported. Measurements will continue to 
be made and reported under the limit/overflow condition with user responsibility for 
maintaining total position information after an overflow condition has occurred. 
Continuous measurement mode eliminates the need for issuing the read quadrature 
position command to obtained updated position data.

NOTE: QPM current angle data is available only via the Read QPM command or the 
continuous measurement mode. The measurement queue and the interrupt events are 
used only for limit/overflow status reporting.

Command $14: Not implemented.

Command $15: Read Quadrature Position. The user may obtain the current angular 
position with the read quadrature position command. This command is used to obtain 
position data updates following the issuance of a QPM command ($13) in 
noncontinuous mode. The current angular position is returned as a 32-bit 
floating-point value calculated by subtracting the counterclockwise 32-bit count from 
the clockwise 32-bit count and converting the result to floating-point format using the 
Quadrature scale factor. This angular position result is stored in the QPM channel 
control block at offset $14, as shown in Table 3-28 on page 73. The direction flag is set 
to $FF for clockwise motion, and $00 for counterclockwise motion. For non-error 
operation, the VMIVME-2540 will respond with a “QPM ready” status to this 
command, or with a limit/overflow status when those events occur. Minimum 
response time may be up to 4 ms due to the floating point operations associated with 
this measurement.

A Read command issued for a channel that has not previously been set up with the 
“QPM” command ($13) will result in a command status code of channel allocation error.

Front Panel Input Signal Connections: The quadrature clockwise signal is connected 
to the even (lower) channel clock input of the channel pair. The quadrature 
counterclockwise signal is connected to the odd (upper) channel clock of the channel 
pair.
80



Command Descriptions 3
Integer Quadrature Position Measurement

Integer quadrature position measurement is very similar to the floating-point QPM, 
but eliminates the overhead of the software floating-point operations and results in 
higher data throughput (Table 3-34 below). The two quadrature signals are connected 
to the clock inputs of two consecutive channels, even and odd. The direction sense of 
the measurement is determined by the quadrature relationship of the input signals: 
when the even channel signal input leads the odd channel signal input, the direction 
is defined to be clockwise. The data format for integer QPM is 32-bit signed two’s 
complement with the convention that clockwise rotation is a positive angle and 
counterclockwise is negative.

Two of the 16-bit counters record the clockwise and counterclockwise pulses 
generated by the front-end logic. These 16-bit hardware counters are augmented by 
16-bit software counters using variables in local memory. Absolute position is 
calculated by subtracting the counterclockwise 32-bit count from the clockwise 32-bit 
count. In the discrete data mode, the user acquires integer QPM angle data from the 
counters by sending the Read Integer Quadrature Position command.

Since the quadrature position is not recorded with a hardware up-down counter, the 
possibility exists where jitter at the quadrature encoder shaft causes repetitive 
direction changes and succeeding trains of clockwise and counterclockwise clock 
pulses. Each 32-bit count variable would be incremented until overflow occurred. The 
VMIVME-2540 provides for encoder jitter, normalizing the two 32-bit count variables 
by subtracting the smaller count from the larger count, and then clearing the smaller 
count. A further special case occurs when unrestricted rotation (or motion) occurs in a 
single direction resulting in a 32-bit quadrature overflow. When an overflow occurs, 
the VMIVME-2540 local CPU writes the corresponding overflow code to CCB offset 
$01 and queues the VMEbus interrupt for that channel’s CCB, if enabled. If the 
VMEbus interrupt IRQ is not enabled, the limit alarm message is posted to the message 
queue with the corresponding quadrature channel number.

NOTE: Integer QPM current count data is available only via the Read Integer QPM 
command or the continuous measurement mode. The measurement queue and the 
interrupt events are used only for limit/overflow status reporting.

Table 3-34  Integer QPM Channel Control Block

Offset Function

$00 Reserved

$01 Channel Status

$02 VMEbus IRQ Level - Overflow interrupt

$03 VMEbus Vector - Overflow Interrupt

$04 Reserved

$08 Reserved

$0C Reserved

$10 Reserved

$11 Direction Indicator

$12 to $13 Reserved

$14 32-bit Two’s Complement QPM Current Count

$18 to $1F Reserved
81



   3 VMIVME-2540 Intelligent Counter/Controller
Command $16: Integer Quadrature Position Measurement. Integer quadrature 
position measurement is initiated for a given channel pair by first writing the 
VMEbus IRQ and vector in the channel control block, if used for overflow/limit status 
notification. The user next writes the lower (even) channel ID code to the Channel ID 
variable and issues the QPM command to the VMIVME-2540 local CPU. When the 
command acknowledge command status code is returned, integer quadrature position 
measurement is active for the indicated channel pair at absolute position zero. 
Continuous measurement mode is available for this command. In continuous 
measurement mode, the QPM measurement is acquired by the local CPU and stored 
in the QPM count location of the CCB (offset location $0014) as rapidly as data 
acquisition and processing can occur. 

Command $17: Read Integer Quadrature Position. This command is used to acquire 
current integer QPM position data in the discrete mode of operation after the integer 
quadrature position measurement command has been issued and the command 
acknowledged. The current angular position is returned as a 32-bit signed two’s 
complement value calculated by subtracting the counterclockwise 32-bit count from 
the clockwise 32-bit count. This angular position result is stored in the QPM channel 
control block at offset $14, as shown in Table 3-34 on page 81. The direction flag (offset 
$11) is set to $FF for clockwise motion, and $00 for counterclockwise motion.

Front Panel Input Signal Connections: The quadrature clockwise signal is connected 
to the even (lower) channel clock input of the channel pair. The quadrature 
counterclockwise signal is connected to the odd (upper) channel clock of the channel 
pair.

16-bit Integer Period Measurement

This measurement mode counts the number of internal clock source periods which 
occur between consecutive rising (or falling ) input signal edges. The input signal is 
connected to the gate input of the channel. As with other measurement modes, the 
host may set parameters to select the autoranging mode, or use a specific clock source 
(200 ns, 2 µs, 20 µs, 200 µs, or 2 ms) for the clock select code. The host program may 
also configure the channel for continuous measurement mode. The local CPU will 
acknowledge the command for successful command processing. When a period 
measurement is subsequently available, the period measurement ready code is written to 
the CCB. If the 16-bit counter overflows, the scale error code is written to the CCB. If 
the channel is not configured for continuous measurement, either the VMEbus IRQ is 
asserted to the host, or the appropriate status code is posted to the measurement 
queue and the measurement ready flag $FFFF is set. The channel control block 
contains a variable (offset $07) which is the clock period code for the clock source used 
to measure the input signal period in both the autoranging or user select clock modes. 
This clock period code (offset $07) is used by the local CPU to report the clock period 
used for the measurement in the autoranging mode. The clock period code return 
matches the codes of Table 3-25 on page 68 which is used by the host to specify 
autoranging by writing $00 to offset $01. In autoranging mode, a channel status of 
under-range may be returned in the CCB status byte. The 16-bit integer clock will be 
valid for this status code, and indicates the local CPU is autoranging for a higher 
resolution for the subsequent clock count measurement. For a rapidly shifting input 
signal, this status may be followed by an over-range status on the subsequent status 
and measurement update, and indication of an erratic input signal. 
82



Command Descriptions 3
The period of the measured data in seconds may be calculated using the clock period 
code returned in offset $07. The channel control block for Integer Period Measurement 
contains the parameters shown in Table 3-35 below.

Command $20: 16-bit integer period measurement. This measurement is initiated by 
writing the user-selected parameters for CCB IRQ/Vector (if used), the clock source, 
selecting the measurement mode (discrete or continuous at $000A) and clearing the 
channel status. The host program then initiates the standard command send sequence 
(clear command status, send command) and verifies that the command 
acknowledged status is received. The measurement is returned to the user at location 
$0004 as an unsigned integer word followed immediately by the channel status code 
of period measurement ready. 

Front Panel Input Signal Connections: The user signal is connected to the gate input 
of the selected channel.

32-bit Integer Period Measurement

This CCB format is shown in Table 3-36 on page 84, and the measurement data is an 
32-bit unsigned integer quantity. This command is generally used to obtain higher 
resolution measurements on lower frequency input signals, and may also be utilized 
for very low frequency input signals. This command requires the use of three 
channels: a single channel to convert the input signal from a single cycle to a pulse 
width (using frequency divider and selecting two as the divisor). The output of the 
frequency divider channel is connected to the input of the channel which has been 
selected by the user for the 32-bit integer period measurement. The channel selected 
for the measurement must be an even channel, and the even channel and the next 
higher odd channel are used for the measurement.

The command supports three modes of operation. Report every measurement (mode 
0), Average N-measurements (mode 1), and Report each Nth measurement (mode 2). 
The sample size/discard count is a 16-bit unsigned integer with a range of 0 through 
65,535. Byte element five of the CCB specifies the clock period selection to be used for 
the measurement. The available clock periods (and their selection codes) are listed in 
Table 3-24 on page 68. No autoranging is available since a minimum time requirement 

Table 3-35   Integer Period Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Clock Select ($00 through $05)

$02 VMEbus IRQ Level 

$03 VMEbus Vector 

$04 16-bit Integer Clock Count (No. of Clocks)

$06 Channel Status

$07 Clock Period Code ($01 through $05)

$08 to $0C Reserved

$0D Operational Mode Select Flag (page 69)

$0E to $0F Reserved
83



   3 VMIVME-2540 Intelligent Counter/Controller
for the counter terminal count would be approximately 14.3 minutes. If other than the 
above parameters are used for the mode and clock period selection, a scale error code 
is returned for the command status.

The measurement returns a count of the number of the above selected clocks that 
occur between rising edges of the gate input signal. The measurement is stored as a 
long word in the 32-bit integer period measurement beginning with byte 8 of the CCB. 
The period measurement is an unsigned integer value with a range of 1 through 
4,294,967,295.

If the N-sample size average mode is used, the accumulation of measurements is 
available in the CCB of the next higher odd channel as a 64-bit quantity beginning 
with byte element 8. Byte element 6 contains the remaining sample count for the 
average. As with host monitoring of all elements of the VMEbus shared memory, 
access to these parameters should be paced to avoid causing excessive delay in 
processing by the VMIVME-2540 local processor.

A scale error code will be returned if the cascaded counters reach the maximum count. 
However, at least one rising edge is required to trigger the counting process, and the 
scale error will only occur if a rising edge is not followed by a second rising edge 
within the maximum time period as determined by the clock frequency selected (for 
the 200 ns clock this is approximately 14.3 minutes).

Command $27: 32-bit integer period measurement. This measurement is initiated by 
writing the user-selected parameters for CCB IRQ/Vector (if used), the measurement 
mode, the clock period select, the sample size (or discard size, if mode 2) to the CCB, 
followed by writing this command code to the command word at offset location $04. 
Discrete operation for the acquisition of data requires that the command be sent for 
each measurement desired. Continuous measurement mode is available for this 
command and the period measurement data will be updated in the CCB as rapidly as 
the local processor can acquire the data. A period ready code is returned as the channel 
status as each new measurement is placed in the CCB.

Table 3-36  32-bit Integer Period Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Reserved

$02 VMEbus IRQ Level

$03 VMEbus Vector

$04 Measurement Mode (0, 1, or 2)

$05 Clock Period Select (1, 2, 3, 4, or 5) 

$06 Average Sample Size/Discard Count (N) 

$08 to $0B 32-bit Integer Period Measurement

$0C Channel Status

$0D Operational Mode Select Flag (page 69)

$0E to $1F Reserved
84



Command Descriptions 3
Front Panel Input Signal Connections: The user signal is connected to the clock 
inputs of any available single channel (odd or even) selected by the user. The outputs 
of that channel are then connected to the gate input of the even channel of a channel 
pair selected for the 32-bit integer period measurement. The single channel must be 
configured by the user for frequency divider with a divisor of two. The even channel of 
the channel pair is configured for 32-bit integer period measurement using the above 
command code ($27) and the command parameters. 

32-bit Integer Pulse-Width Measurement

The elements of the CCB for this mode of operation is shown in Table 3-37 on page 86. 
This command utilizes two adjacent channels beginning with an even channel 
number (that is, 0, 2, 4....). The command enables a 32-bit unsigned integer 
measurement of the user signal placed on the gate input pin of the selected even 
channel. The user may select a low active level input or a high active level input using 
byte element 1 of the CCB. A value of 0 selects an active high-level pulse and a value 
of two selects a active low-level pulse. The selection of the active low-level input 
requires that the user daisy chain his gate input signal to both the even and odd 
channel for the command to function properly. This command provides the user with 
the ability to measure the duty cycle of the gate input signal. With the use of four 
channels, and selecting an active low pulse on two channels and an active high on two 
channels, a complete set of signal characteristics can be obtained for the input signal, 
including duty cycle and period attributes, but requires the host software to perform 
the computations for those parameters.

The measurement returns a count of the number of the above selected clocks between 
the rising and falling (or falling and rising) edges of the gate input signal. The pulse-
width measurement is stored as a 32-bit unsigned integer quantity beginning with 
offset byte 8 of the CCB with a range of 1 through 4,294,967,295.

The 32-bit integer pulse width command provides the user with three modes of 
measurement operation. The modes available are as follows: report every 
measurement (mode 0), average N-measurements (mode 1), and report each Nth 
measurement (mode 2). The sample size/discard count is a 16-bit unsigned integer 
with a range of 0 through 65,535. Byte element five of the CCB specifies the clock 
period to be used for the measurement. The available clock periods (and their 
selection codes) are the same as those shown in Table 3-42 on page 95. No autoranging 
is available since a minimum time requirement for the counter terminal count would 
be approximately 14.3 minutes. If other than the above parameters are selected for the 
edge control, mode, and clock period, a scale error code will be returned to the user in 
the command status byte.

The 16-bit integer period measurements should be used if the user’s application will 
permit since measurement data throughput will be improved and hardware resource 
requirements reduced. This command requires the presence of a minimum of three 
pulses (or periods) to acquire and return a valid measurement.

This command can also return a scale error code if an active-going edge is not followed 
by an inactive-going edge within the time period as determined by the clock period 
selection. 
85



   3 VMIVME-2540 Intelligent Counter/Controller
Command $28: 32-bit integer pulse-width measurement. This measurement is 
initiated by writing the user-selected parameters for IRQ/Vector (if used), the 
measurement mode, the clock period select, the input edge select, and the sample 
discard size (if mode 2 is selected) to the CCB, and then writes this command code to 
the command word at offset location $04. Discrete operation for the acquisition of 
data requires that the command be sent for each measurement desired. Continuous 
measurement mode is available for this command, and the pulse-width measurement 
data will be updated in the CCB as rapidly as the local processor can acquire the data. 
A pulse-width ready code is returned as the channel status as each new measurement is 
placed in the CCB.

Front Panel Input Signal Connections: The user signal is connected to the gate inputs 
of the lower (even) channel of the channel pair. If a pulse-width measurement of a low 
active pulse is required, the user signal must be connected to both the upper and 
lower (odd) gate inputs of the channel pair.

Group Acquisition Mode (Integer QPM)

Group acquisition mode allows the host to acquire two integer quadrature position 
measurements simultaneously. The group acquisition command functions the same as 
two simultaneous read integer QPM commands. The host first initializes the two 
consecutive integer QPM channels. The lower channel of the QPM channel pair must 
be on a modulo 4-channel boundary (0, 4, 8, etc.). Since the command is used in 
conjunction with previous configured QPM channels, it does not have an associated 
CCB.

When the command is issued by the host program, the local CPU will read each QPM 
channel, place the QPM values in their respective CCBs, and acknowledge the 
command for a successful operation, or return an error code in the command status 

Table 3-37  32-bit Pulse-Width Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Gate Edge Select Code

$02 VMEbus IRQ Level

$03 VMEbus Vector

$04 Measurement Mode (0, 1, or 2)

$05 Clock Period Select (1, 2, 3, 4, or 5)

$06 Average Sample Size/Discard Count (N) 

$08 to $0B 32-bit Integer Pulse-Width Measurement

$0C Channel Status

$0D Operational Mode Select Flag (page 69)

$0E to $1F Reserved
86



Command Descriptions 3
for a command failure. Continuous measurement mode is available for the group 
acquisition command.

Command $24: Quadrature group acquisition. The host writes the lower QPM 
channel number to the channel ID word (offset $000A), and then places the command 
code in the command word (byte) (offset $0004). If no errors occur, the command 
status will be updated with a quadrature position measurement ready ($06) in the 
command status byte (or an error code, if one is detected).

16-bit Integer Pulse Measurement

This measurement mode counts the number of internal clock source periods which 
occur between consecutive rising and falling edges of the input signal. The input 
signal is connected to the gate input of the selected channel. The CCB format is shown 
in Table 3-38 below. As with other measurement modes, the host may set parameters 
to select the autoranging mode, or use a specific clock source (200 ns, 2 µs, 20 µs, 200 
µs, or 2 ms). The host may also configure the channel for continuous measurement 
mode. When the measurement is completed successfully (acknowledged by the local 
CPU), the pulse-width measurement ready code is written to the CCB. If the 16-bit 
counter overflows, the scale error code is written to the CCB. If the channel is not 
configured for continuous measurement, either the VMEbus IRQ is asserted to the 
host, or the appropriate status code is posted to the measurement queue and the 
measurement ready flag $FFFF is set. The CCB contains a variable (at offset $07) 
which is the clock period select code for the clock source used to measure the input 
signal period in both the autoranging or user-selected clock modes. This clock period 
code is used by the local CPU to report the clock period used for the measurement in 
the autoranging mode. The clock period code return matches the codes of Table 3-25 
on page 68 which are used by the host to specify autoranging by writing $00 at offset 
$01. The period of the measured data may be calculated by the host program using the 
clock period code returned in offset $07. The channel control block for Integer Pulse-
Width Measurement contains the parameters shown in Table 3-38.

Command $26: 16-bit integer pulse-width measurement. This measurement is 
initiated by writing the user-selected parameters for CCB IRQ/Vector (if used), the 

Table 3-38  16-bit Integer Pulse-Width Measurement Channel Control Block

Offset Function

$00 Reserved

$01 Clock ($00 through $05)

$02 VMEbus IRQ Level 

$03 VMEbus Vector 

$04 16-bit Integer Clock Source Period Count

$06 Channel Status

$07 Clock Period Code ($01 through $05)

$08 to $0C Reserved

$0D Operational Mode Select Flag (page 69)

$0E to $0F Reserved
87



   3 VMIVME-2540 Intelligent Counter/Controller
clock source, selecting the measurement mode (discrete or continuous at $000A), 
clearing the channel status, and writing the channel number to the channel ID. The 
host program then issues a clear command status, verifies the command status is 
clear, sends command code $26, and verifies command acknowledgment. The 
measurement is returned to the user at CCB offset location $0004 as an unsigned 
integer word when the channel status is updated to pulse-width measurement ready. 

Front Panel Input Signal Connections: The user signal to be measured is connected 
to the gate input of the selected channel.

Delayed Event Timer with VMEbus Interrupt

The delayed event timer command allows the host to allocate any of the 24 channels 
as a 16-bit delay timer triggered by an edge gate signal input. The timer begins the 
delay at the active edge, and when the timer delay expires the specified IRQ level and 
IRQ vector are used to send an interrupt to the host. This command can be used as a 
single event timer or repetitive event using the multiple event flag. If the host sets the 
multiple event flag, every subsequent active edge on the gate input will restart the 
delay count. This command also permits the use of the edge to provide only a pulse 
output (no interrupt) at the end of the delay. This mode is programmed by setting the 
IRQ level to $FF. The event delay timer operates in a retriggering default mode. This 
means that if the delay time is greater than the time between successive active edges, 
the counter will retrigger. This retriggering has the following effect: The first active 
edge will save the elapsed time in an internal register (not accessible by the user), the 
second active edge will load the delay counter, and the third active edge will initiate 
counting. The user will only receive the interrupt on an active edge which is preceded 
by an edge by the length of time greater than the delay time, and, if the input has 
caused a retriggering, a total of three edges will have occurred prior to the interrupt 
delivery (and/or the pulse output). This will have the effect of suppressing an 
interrupt delivery (and the pulse output) until the edge signal period exceeds the 
delay time for three successive cycles.

The retriggering feature can be suppressed by using the retrigger suppression flag. 
Setting this flag to a nonzero value will cause the successive active edges (which are 
separated by less than the delay time) to be ignored until the delay time has elapsed. 
After the delay time has elapsed, the succeeding edges will restart the delay count, if 
the multiple event flag is set. This has the effect of providing the event delay from the 
first detected active edge after the command is sent from the host.

Note also that due to interrupt overhead and processing, the local CPU can be placed 
in an infinite loop by nonretriggering input edges which occur at a frequency greater 
than approximately 12 kHz if the VMEbus IRQ and vector are set for interrupt 
delivery. 

This event delay also provides an update to the channel status byte of the CCB at the 
end of the delay. For error-free operation, this status will normally be a timer alarm 
status. The timer alarm status will remain in the CCB until acknowledged by the host 
program (by clearing the status byte). The channel control block for the event counter 
CCB format is shown in Table 3-39 on page 89.
88



Command Descriptions 3
Command $25: The host initiates Delayed Event Timer mode by writing the desired 
input clock edge, the CCB IRQ and vector (if used), the multiple event flag, the 
retrigger suppression flag, and the desired delay parameter to the channel control 
block. After the parameters have been initialized, the host writes the event counter 
channel ID to the channel variable at offset $000A, and then writes the command 
value at board offset $0004.

Front Panel Input Signal Connections: The signal which will provide the edge is 
connected to the gate inputs of the selected channel.

Programming Strategies for Input Operations

The VMIVME-2540 supports several host program strategies for the acquisition of 
data for the input operations. The strategy used will be dependent on the data 
acquisition mode selected for channel operation. The data acquisition modes available 
are either continuous or discrete. The data acquisition mode is selected prior to 
sending the command (write to location $0004) to the VMIVME-2540. The data 
acquisition mode is selected by setting ($FF) or clearing ($00) the continuous/discrete 
flag (location $000B) prior to sending the command. 

Table 3-39  Delayed Event Timer CCB Format

Offset Function

$00 Reserved

$01 Event Clock Edge (zero for falling edge, nonzero for rising)

$02 VMEbus IRQ ($FF for trigger pulse output only)

$03 VMEbus Vector

$04 32-bit IEEE-754 Format Floating-Point Timer Delay (seconds)

$08 Multiple Events Flag (zero for single, nonzero for multiple)

$09 Retrigger Suppression Flag (nonzero to suppress retriggering)

$0A to $0B Reserved

$0C Channel Status (timer alarm - $08 for normal operation) 

$09 to $0B Reserved
89



   3 VMIVME-2540 Intelligent Counter/Controller
Continuous Data Acquisition Mode

The continuous data acquisition/measurement mode causes the local CPU to collect 
measurement data for that channel as rapidly as processing can occur. The update rate 
for the measurement data in the channel CCB will be related to the number of 
channels operating in continuous data acquisition mode, and the amount of host 
accesses to the VMIVME-2540 via the VMEbus.

The following commands are supported under continuous data acquisition mode:

• 16-bit Event Counting with or without level gating
• 32-bit Event Counting with or without level gating
• 16-bit Period/Frequency/Pulse-Width Measurements

• Enhanced 16-bit Period/Frequency/Pulse-Width Measurement
• Quadrature Position Measurement
• Integer Quadrature Position Measurement/Group Acquisition
• 16-bit Integer Period/Pulse-Width Measurements
• 32-bit Integer Period/Pulse-Width Measurements

For the continuous measurement mode, measurement date availability can be 
detected by the host program by using either of two available methods:

• Polling individual CCB channel status codes
• Polling individual channel data validity flags 

The host programs a channel for continuous measurement mode by placing a nonzero 
value in the continuous/discrete flag, usually $FF, (refer to Table 3-1 on page 51) at 
byte offset location $000B, selects the channel (by writing the channel number to 
location $000A), and writes the channel parameters to the channel control block of the 
selected channel. The clear command status command is issued to clear the command 
status buffer, and the command status is verified as zero by the host program. The 
command is then issued for the channel measurement operation by writing the 
measurement command code to the command location at word offset $0004 (byte 
offset $0005), and the resulting command status should be verified for a command 
acknowledge code (or the resulting error code should be processed for corrective 
action). In continuous measurement mode, both the CCB and channel data validity 
flags are updated by the local CPU when measurement data is written to the CCB. The 
VMEbus host program may choose to monitor either the CCB channel status code or 
the data validity flag to detect updates to data measurements in the CCB.

The local CPU clears the measurement data validity flag, updates the CCB 
measurement data, and sets the data validity flag indicating measurement data 
availability. The host program may choose to clear the data validity flag after the 
measurement data is read, which will allow the host to detect the next available 
updated data measurement in the CCB. 

If the CCB channel status byte is used for data acquisition, the host program should 
clear the channel status prior to writing the command to set up channel operation. 
The local CPU will update the CCB channel status code any time that an error is 
detected in channel operation, a limit condition is reached, or a data measurement has 
been updated. The host program then monitors the CCB status byte to detect a 
nonzero status condition when it occurs, indicating a change has occurred in channel 
status. The retrieved code can then be used to detect an error condition, a 
measurement ready, or a limit condition, each of which may require a separate 
90



Command Descriptions 3
processing segment by the host program. The channel status byte should be cleared 
immediately following the access of a nonzero value in preparation for detecting 
subsequent channel status changes.

Accesses to either the CCB channel status or the data validity flag require local bus 
arbitration. The accesses should be paced to avoid adverse impacts to the local CPU 
processing. 

NOTE: Interrupts are not available for continuous measurement mode, and the 
channel control block IRQ and vector are not used in continuous measurement mode.

Discrete Data Acquisition Mode

Discrete data acquisition mode is used to acquire a single data measurement from a 
selected channel when a command is issued. The continuous/discrete flag (location 
$000B) must to set to zero (0) prior to writing the command code to the command 
register (location $0004; byte $0005). Discrete data acquisition host processing will 
vary according to the type of input command issued to the VMIVME-2540 as follows:

For event count and quadrature position measurements, channel operation is 
initialized by sending the command for the event count or quadrature input. The local 
CPU will configure the counter channel(s) for the commanded operation, initializing 
counter hardware to perform the input. The discrete measurement data is then 
acquired for those input modes by sending a read command. Sending the read 
commands will result in the local CPU accessing the channel data and placing that 
data in the CCB (see Channel Input/Measurement Command Codes on page 71 for details 
of these commands). All other input operations (period, frequency, pulse width, etc.) 
require that the host reissue the command each time a data measurement is needed by 
the host processor, and that a disable channel command be issued after each 
measurement is acquired (or the disable channel command may be issued preceding 
the measurement command).

The VMIVME-2540 provides three different methods for host notification of input 
data availability or channel status change. These are as follows:

• Data and channel status change reporting
• The use of interrupts for discrete (noncontinuous) channel measurement, the 

use of a single-polled status flag to obtain channel status/measurement data 
availability from all active channels, using the measurement queue contained 
within the local CPU memory space.

• The CCB channel status for each channel. The channel status is always updated 
with status information when any channel status change occurs, including 
availability of measurement data.

The use of interrupts and the use of the measurement queue interface are 
complementary; that is, if the VMEbus IRQ for the channel is not enabled (or is not 
used), the corresponding measurement code and channel ID are inserted into the 
measurement queue. If IRQ level and vector are used (nonzero and enabled) in the 
channel CCB, then the measurement queue will not be used for measurement 
reporting to the host.

The interrupt-driven measurement mode uses the VMEbus IRQ and vector stored in 
the channel control block to notify the user of completion of a measurement operation 
91



   3 VMIVME-2540 Intelligent Counter/Controller
and the availability of measurement or status data in the associated channel control 
block. The user’s interrupt service routine should verify that a successful 
measurement has occurred by examining the channel status byte located in the 
channel control block. For a successful measurement, the channel status byte will 
indicate some ...measurement ready status; that is, period measurement ready, pulse-width 
measurement ready, etc., depending on the command for that channel. This approach 
will allow the detection of error conditions, which are also reported via the channel 
measurement interrupt. The interrupts are delivered to the host at a 1 kHz rate, using 
an internal interrupt queue within the local CPU’s memory.

Discrete input operations for event and QPM measurements use the read... command. 
The command status interrupt provides the interrupt interface for these data 
acquisition. Both the CCB status and the command status will reflect a ...measurement 
ready (or error code) when the operation is completed and the command status 
interrupt is sent to the host processor.

If the associated IRQ and vector for that channel are zero (or the interrupt is disabled), 
the local CPU places the channel ID and the channel status in the local memory of the 
VMIVME-2540 local CPU which is not accessible from the VMEbus. This queue 
contains the channel status and channel ID information for all input measurements 
which have been performed by the local CPU and are pending delivery to the host 
processor. The measurements are placed on the queue sequentially as data is acquired. 
Hence, the measurement queue may contain multiple entries for the same channel if 
the host does not service the measurement queue flag at a higher rate than channel 
measurement data is acquired. This situation can occur if multiple discrete mode 
commands are sent to the local CPU and the measurement queue flag is not polled 
and cleared for the measure queue entries. Note also that if the queue is not serviced 
(via the measurement queue flag) at a rate higher than the data acquisition rate of the 
local CPU, measure queue overflow can occur with the resulting loss of measurement 
queue entries. The queue is managed as a circular queue using input and output 
pointers by the local CPU, and when overflow occurs, existing entries in the queue 
will be overwritten. No status reporting occurs for a measurement queue overflow, 
permitting the user to ignore the measurement ready flag (location $000C) if other 
measurement input strategies (such as monitoring the CCB status byte) are used.

When the local CPU measurement queue is not empty, the VMIVME-2540 local CPU 
moves the top queue entry, located by the local CPU output pointer, to the 
measurement channel ID and measurement status (locations $000E and $000F, 
respectively), and then sets the measurement flag (location $000A) to $FFFF. The 
measurement queue is serviced at a 1 kHz rate by the local CPU. Single entries are 
removed from the local processor internal queue and placed in the shared memory 
area each time the measurement flag is detected as cleared (zeroed by the host 
processor).

After the host program completes the read of the measurement channel ID and code, 
the host should clear the measurement flag. Unlike the command status register, host 
access to the measurement flag is arbitrated by the VMIVME-2540 on a cycle-by-cycle 
basis. Due to this local bus arbitration, rapid polling of the measurement flag by the 
VMEbus host may degrade the performance of the VMIVME-2540 local CPU. The 
VMEbus host should pace access to the measurement flag to avoid adversely affecting 
the local CPU performance.

Host Processing Sequence: Initialize the channel CCB with the parameters desired 
for the operation to be performed, set the applicable (either CCB or Command Status) 
IRQ level and vector (if interrupts are used for measurement ready notification), or 
92



Command Descriptions 3
clear the IRQ level and vector location in the channel CCB (if the measurement queue 
or channel status in the CCB is used for measurement ready notification). Clear the 
channel status in the CCB. Select the discrete measurement mode by setting the 
continuous/discrete flag (location $000A) to zero. Send the clear command status 
command, and then verify that the command status code is zero. Write the command 
code for the desired measurement to location $0004. 

If polling is used, wait for a nonzero status code at word location $0006 (byte location 
$0007), then process the return code (command acknowledge - $01 for success or error 
processing, and notification for other codes (...measurement ready will be returned for 
command status for event and QPM read commands). For commands other than read 
operations, read the channel status of the CCB for a nonzero value. When a nonzero is 
placed in the CCB channel status, the operation has completed and a ... measurement 
ready code is returned, measurement data is available in the CCB (or an error has 
occurred for the data acquisition and the channel status will identify the type of 
error).

If interrupts are used for command servicing, an interrupt service routine should 
process the command status return code for both successful (command acknowledge) 
and command error status codes.

For interrupt notification using the read... commands, the data will be available (or 
error status information) with the command status interrupt delivery. For all other 
input operations, the data will be available after the local CPU acquires the data and 
places it in the CCB measurement location. The CCB channel status is updated when 
the measurement data is placed in the CCB. The CCB IRQ level and vector will be 
used to interrupt the host. All interrupt service routines for data acquisition should 
clear the channel status in the CCB in preparation for subsequent data delivery via the 
interrupt interface.

If the measurement queue is used, read the measurement queue flag and test for 
$FFFF. If the measurement queue flag is $FFFF, read the measurement channel and 
status bytes, moving them to host CPU memory space for processing and then clear 
the measurement queue flag in preparation for further measurement queue data 
updates from the local CPU.

Channel Output/Waveform Generation Command Codes

16-bit Frequency Divider

The parameter list for the 16-bit frequency divider CCB contains a 16-bit binary 
integer divisor supplied by the user prior to the command interrupt. This CCB format 
is shown in Table 3-45 on page 97. Frequency division is accomplished by connecting 
the frequency source to the clock input of the indicated channel and extracting the 
divided signal from the output signal of the same channel. The output signal 
generated by the frequency will be a square wave with a 50 percent duty cycle and 
independent of the clock input duty cycle. This command will generate a continuous 
output signal until a disable channel command is received by the local CPU.
93



   3 VMIVME-2540 Intelligent Counter/Controller
Command $07: 16-bit Frequency Divider. Range of divider is 2 through 65,535. A 
bounds error channel status will be returned for divider values less than 2.

Front Panel Input Signal Connections: The signal to be divided is connected to the 
clock input of the selected channel. The divided signal is available at the output pin of 
the selected channel.

32-bit Frequency Divider

A 32-bit frequency division is accomplished by connecting the frequency source to the 
clock input of the lower (even) channel and extracting the divided signal from the 
output signal of the next higher (odd) channel. For successful operation, the output 
signal of the higher channel must be connected externally to the gate input of the 
lower channel. The parameter list for the 32-bit frequency divider CCB contains a 32-
bit binary integer divisor supplied by the user prior to the command interrupt. This 
CCB format is shown in Table 3-41 below. The 32-bit frequency division may be 
commanded for even channels only: channels 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. 
If the user commands a 32-bit frequency division for an odd channel number, the 
VMIVME-2540 local CPU gives the channel allocation error command status code. For a 
channel pair to be successfully set up for 32-bit frequency division, the next higher 
channel must first be disabled. If the user commands 32-bit frequency division for a 
channel pair which has not been previously disabled, the local CPU gives the active 
channel error command status code. The 32-bit divisor must be a quantity greater than 
65,536. If the 32-bit divisor is 65,536 or less, the local CPU gives the bounds error 
command status code. The frequency divider channel will generate a continuous 
output signal, based on the input signal, until a disable channel command is received 
by the local CPU.

Command $08: 32-bit Frequency Divider. This enhanced 32-bit mode of operation 
requires that the user externally connect the output signal from the next higher 
channel N+1 to the gate input of channel N. Once the counters have been initialized, 
the command status buffer is loaded with the divider-ready message, and the VMEbus 
command status IRQ and vector are placed in the VMEbus interrupt queue, if the 
interrupt is enabled and the IRQ level is nonzero.

Table 3-40  16-bit Frequency Divider Channel Control Block

Offset Function

$00 Reserved

$04 16-bit Divisor (Binary Integer)

$06 to $0F Reserved

Table 3-41  32-bit Frequency Divider Channel Control Block

Offset Function

$00 Reserved

$04 32-bit Divisor (Binary Integer)

$08 to $0F Reserved
94



Command Descriptions 3
Front Panel Input Signal Connections: The signal to be divided is connected to the 
clock input of the lower (even) channel of the channel pair. The divided signal is 
available on the upper (odd) channel of the channel pair. The outputs (high and low) 
of the upper channel must also be connected to the gate inputs (high and low) of the 
lower (odd channel).

Period/Pulse-Width Generation

The parameter list for the period/pulse-width generation mode contains a 32-bit 
IEEE-754 floating-point period value, and a 32-bit IEEE-754 floating-point pulse width 
value. This CCB format is shown in Table 3-42 below. The commanded period must 
fall within the range of 400 ns to 262.14 s for both square-wave generation and pulse 
train generation. For commanded periods outside these ranges, the local CPU returns 
the bounds error command status code. The commanded pulse width must fall within 
the range of 200 ns to 131.07 s, or the local CPU will return the bounds error command 
status code.

A disable channel command between subsequent writes of the period/pulse-width 
generation command is not required. If a channel has been previously set up for 
generation, the host program may command new (different) period values as 
required. A channel operating in this mode will generate a continuous signal until a 
disable channel command is received by the local CPU.

NOTE: The maximum pulse width high or low is 131.07 seconds, limiting the duty 
cycle for periods between 131.07 to 262.14 seconds.

Command $09: Square-Wave Generation, 16-bit counter with internal time base and a 
50 percent duty cycle. The pulse width value is not used.

Command $0A: Pulse Train Generation, 16-bit counter with internal time base. The 
period value is scaled to choose an internal time base and total counter period. The 
pulse width value will determine the output high duration and the difference 
between the period value, and the pulse width value will determine the output low 
duration. The use of a pulse width parameter which is greater than the period 
parameter will result in an error return of period error and an output signal which has 
the specified pulse width period of 13.2 milliseconds.

Front Panel Input Signal Connections: None.

Table 3-42  Period/Pulse-Width Generation Channel Control Block

Offset Function

$00 to $03 Reserved

$04 32-bit IEEE-754 Floating-Point Period Value (seconds)

$08 32-bit IEEE-754 Floating-Point Pulse-Width Value (seconds)

$0C to $0F Reserved
95



   3 VMIVME-2540 Intelligent Counter/Controller
Frequency/Duty Cycle Generation

The parameter list for the frequency/duty cycle generation mode contains a 32-bit 
IEEE-754 floating-point frequency value, and a 32-bit IEEE-754 floating-point duty 
cycle value. This CCB format is shown in Table 3-43 below. The commanded 
frequency value must fall between the values of 2.5 MHz and .007629 Hz for 
square-wave generation, 2.5 MHz to 0.003815 Hz for pulse train generation. For 
commanded frequencies outside these ranges, the VMIVME-2540 local CPU returns 
the bounds error command status code. Duty cycle values are expressed as percent, 0 to 
100 percent. The smallest duty cycle is determined by the ratio of 200 ns to the 
reciprocal of the commanded frequency since the smallest pulse width must be one 
5 MHz clock cycle. Similarly, the largest duty cycle is determined by the ratio of the 
period of the commanded waveform less 200 ns to the commanded period.

A disable channel command is not required between subsequent writes of the 
frequency/duty cycle generation command. If a channel has been previously set up 
for frequency/duty cycle generation, the host may command new (different) 
frequency values as required by the host program application. A channel operating in 
this mode will generate the signal commanded until a disable channel command is 
received by the local CPU.

Command $0B: Frequency Generation. 16-bit counter with internal time base. The 
frequency value is scaled to choose an internal time base and total counter period. The 
output signal is a 50 percent duty cycle. The duty cycle parameter is not used.

Command $0C: Duty Cycle Generation. 16-bit counter with internal time base. The 
frequency value is scaled to choose an internal time base and total counter period. The 
duty cycle value is then used to obtain the output high pulse width from the total 
counter period. The duty cycle is entered as a quantity between 0.00 and 100.00.

Front Panel Input Signal Connections: None.

Pulse Sequence Generation

This output mode allows the VMEbus host to command the VMIVME-2540 to 
generate a finite sequence of pulses with 0 to 100 percent duty cycle. Pulse sequence 
mode requires two adjacent channels: an even channel N which generates the pulses 
and an odd channel N +1 which counts the pulses. External wires are required on the 
P3/P4 front panel connect from the output of channel N+1 back to the gate input of 
channel N. Pulse sequence mode may only be commanded for even-numbered 
channels. The two channels must be disabled before the first pulse sequence 
command is issued. Consecutive pulse sequence commands may be sent for a selected 
channel without sending a disable channel command between them. See Table 3-44 on 
page 97.

Table 3-43  Frequency/Duty Cycle Generation Channel Control Block

Offset Function

$00 to $03 Reserved

$04 32-bit IEEE-754 Floating-Point Frequency Value (Hz)

$08 32-bit IEEE-754 Floating-Point Duty Cycle Value (Percent)

$0C to $0F Reserved
96



Command Descriptions 3
Command $21: The host initializes the clock select (codes 1 through 5, Table 3-24 on 
page 68), number of clocks high (high-level duration), number of clocks low 
(low-level duration), and the number of pulses (or cycles) (1<N<32767) to be output. 
For interrupt-notification of the operation completion, the host initializes the VMEbus 
IRQ and vector locations in the CCB. The host selects the channel by writing the 
channel number to the channel ID location, then writes $21 to the command location 
at offset $0004. After pulse train completion, the VMIVME-2540 local CPU writes $FF 
to offset $0F in channel status of the CCB. If the VMEbus IRQ is not enabled for the 
channel, the VMEbus limit alarm is placed in the message queue after completion of 
the pulse train. The channel control block for pulse sequence mode contains the 
parameters shown in Table 3-44 above.

Front Panel Input Signal Connections: None.

Programmed Output Mode

This output mode allows each channel output of the VMIVME-2540 to operate as a 
discrete digital output with the host program controlling the output state. The host 
program sets the digital output state by setting the state parameter ($00 for a zero volt 
output signal or $01 for a 5 volt output level) in the CCB and sending the 
programmed output command. Transport lag for local CPU processing before a 
changed output state occurs is approximately 60 µs.

Command $22: This command sets the channel output to the selected state. The host 
writes the desired logic state (1 or 0) to offset $01 in the channel control block, 
initializes the channel ID location, and then writes $22 to the command location. 
When the VMIVME-2540 local CPU has set up the output, the command acknowledge 
status code is returned. See the channel control block, Table 3-45 above, for 
programmed output mode contains the desired output state. The channel output state 

Table 3-44  Pulse Sequence CCB Parameters

Offset Function

$00 Reserved

$01 Clock Period Select ($01 through $05)

$02 VMEbus IRQ

$03 VMEbus Vector

$04 16-bit Integer Number of Clock Cycles Output Low

$06 16-bit Integer Number of Clock Cycles Output High

$08 16-bit Integer Number of Pulse 

$0A to $0E Reserved

$0F Completion Flag

Table 3-45  Programmed Output CCB Parameters

Offset Function

$00 Reserved

$01 Output State - 0 for Logic Low, 1 for Logic High

$02 to $0F Reserved
97



   3 VMIVME-2540 Intelligent Counter/Controller
is set to the selected level by the local CPU immediately prior to the command 
acknowledge status return.

Front Panel Input Signal Connections: The programmed output is available on the 
output pins of the selected channel.

Quadrature Position Control

This output mode allows the VMEbus host to command the VMIVME-2540 to 
generate sequence of pulses on two channels in quadrature mode. The host writes the 
desired signed quadrature position change (delta) in the channel control block (CCB), 
while the VMIVME-2540 local CPU maintains the current absolute quadrature 
position in the CCB. The VMIVME-2540 CPU configures the phase of the two 
quadrature signals using the sign of the 16-bit two’s complement change variable. 
When the new position is attained, either the CCB IRQ is asserted to the host if 
enabled, or the quadrature position reached status code is posted to the measurement 
queue for polling mode.

Quadrature position control requires a total of four adjacent channels: two adjacent 
channels for each quadrature signal to be generated. In addition, each channel pair 
requires external wires routed from the output of channel N+1 back to the gate input 
of channel N, and the output of channel N+3 back to the gate input of channel N+2. 
The quadrature output signals are generated by the outputs of channels N and N+2. 
The quadrature output signals have a 50 percent duty cycle with ±1/4 wave phase 
mode. 

When the quadrature pulse train is completed, the VMIVME-2540 local CPU writes 
the completion flag $FF to offset $0F in the CCB channel status. If the VMEbus CCB 
IRQ is enabled for the channel, the VMEbus IRQ is asserted. Note that the command 
status is used to deliver the command acknowledge (or command error) status, and that 
the CCB IRQ is used to deliver the completion of the operation. When the VMEbus 
IRQ is not enabled, the local CPU posts the limit alarm to the message queue after 
completion of the quadrature pulse train. The quadrature current position is 
maintained in the channel CCB. The channel control block for the Quadrature Output 
Mode contains the parameters shown in Table 3-46 below.

Command $23:  The host initializes the clock period select, number of clocks high, 
number of quadrature pulses to be output (delta), the current absolute position, clears 
the channel status, writes the VMEbus IRQ, and vector (nonzero for interrupt 
handling, zero for polling) in the channel CCB. The host then writes the channel 

Table 3-46  Quadrature Control Output Mode

Offset Function

$00 Reserved

$01 Clock Source ($01 through $05)

$02 VMEbus IRQ

$03 VMEbus Vector

$04 16-bit Integer Number of Clock Cycles High (Pulse-Width)

$06 16-bit Integer Two’s Complement Quadrature Position Delta

$08 32-bit Integer Two’s Complement Current Absolute Position (Number of Clock Cycles)

$0C to $0E Reserved

$0F Channel Status 
98



Command Descriptions 3
number to the channel ID location, then writes command $23 to offset $0004. It is not 
necessary to issue the disable channel command between subsequent writes of the 
quadrature position control command when position changes are updated by sending 
the command with a delta change.

Front Panel Input Signal Connections: For each channel pair, connect external wires 
from the output of channel N+1 to the gate input of channel N, and the output of 
channel N+3 to the gate input of channel N+2. The quadrature output signals are 
available on the outputs of channels N and N+2.

Programming Strategies for Output Operations

The user may select interrupt operation or polling for the output commands of the 
VMIVME-2540. All digital signal output operations operate in a continuous mode 
after the commands have been sent and acknowledged by the local CPU with the 
exception of the pulse sequence and quadrature position control which generate a 
single sequence of output signals. For host program polling, the host program should 
initialize the CCB parameters for the selected output operation to include clearing of 
the CCB channel status, if used. The channel ID should be set for the desired channel. 
The command should then be written to location $0004. The command status should 
then be monitored for a command acknowledge command status code. When the 
command acknowledge status is received, the output signal is active. Where applicable, 
the host program should then poll the CCB status for the completion of those 
operations which operate in a single sequence mode (quadrature position and pulse 
sequence) if this information is required for host processing.

For interrupt processing for output operations, the command status interrupt handler 
may be used for the handling of command status after commands are sent using the 
command status IRQ and vectors. In addition, the interrupt handler may be used for 
processing the completion of some of the output operations (pulse sequence and 
quadrature position control) if the host program requires notification of those events. 
The processing sequence for setting up the output signals would parallel the 
processing for using the polling methodology, except the polling steps for command 
status and CCB channel status for operation completion would be replaced with 
interrupt handling routines.

Timer Operation Command Codes

The VMIVME-2540 provides timer functions based either on internal clock 
frequencies using timer channel control blocks (TCCBs), or timing delays for a front 
panel input signal using the standard channel control block (CCB). The following 
sections describe the timing operations supported by the board. The timer operation’s 
programming strategies are consistent with the channel output programming 
discussed in the Programming Strategies for Output Operations on page 99.

Timer/Periodic Interrupt

The parameter list for the timer/periodic interrupt mode contains the VMEbus IRQ 
level and interrupt vector to be asserted after the indicated time interval, and a 32-bit 
IEEE-754 floating-point time interval of seconds. This command uses only the timer 
channel control block for operation. This TCCB format is shown in Table 3-47 on page 
100. The timer/periodic interrupt command may be issued only for timer channels 
available according to the board channel count; if the user issues commands for timer 
99



   3 VMIVME-2540 Intelligent Counter/Controller
channels exceeding the timer channel count of the board, the VMIVME-2540 local 
CPU will return the channel allocation error command status code. A single timer 
channel is available for each group of four channels, and will vary according to the 
board option, from one for a 4-channel board to five for a 24-channel board.

NOTE: Timer Channel 0 is used internally to schedule the delivery of interrupts and 
measurement queue data to the host program. The timer interrupt is available to the 
user for this channel; however, the interrupt interval is restricted to 1 ms.

Command $18: 16-bit Counter, single cycle. The VMIVME-2540 local CPU configures 
the selected channel with the 200 ns time base for interrupt intervals from 200 ns to 
13.1 ms, the 2 µs time base for periods from 13.1 ms to 131 ms, 20 µs time base for 
periods from 131 ms to 1.31 s, 200 µs time base for periods from 1.31 to 13.1 s, and        
2 ms for periods from 13.1 s to 131 s. The VMEbus interrupt is asserted only once for 
this command.

Command $19: 16-bit Counter, automatic restart. This command contains the same 
parameter interrupt setup as command $18, but the timer will automatically restart 
after each VMEbus IRQ has been asserted.

NOTE: The use of a restart timer interrupt with interval of less than approximately 
50 µs (The processor data transport time for interrupt delivery) will result in the 
processor being in a compute-bound condition, and preclude further measurement 
reporting and command responses from the board.

Command $1A: Disable Timer. This command instructs the VMIVME-2540 local CPU 
to disarm the counter associated with the indicated timer and halt the VMEbus 
interrupts associated with that timer. 

Front Panel Input Signal Connections: None (no front panel inputs/outputs are 
available for the timers).

Auxiliary Commands

The VMIVME-2540 has two commands which are not related to channel input, 
output, or timer functions and have no corresponding channel control blocks in 
shared memory.

Table 3-47  Timer/Periodic Interrupt Channel Control Block

Offset Function

$00 Reserved

$02 VMEbus IRQ

$03 VMEbus Vector

$04 32-bit: IEEE-754 Floating-Point Time Interval (seconds)

$08 to $0F Reserved
100



Command Descriptions 3
Block Move: Command $1D - The Block Move command instructs the VMIVME-2540 
local CPU to move a block of memory, 16 bits at a time, located at 32-bit 
<start_address> with 16-bit words <qty_words> to a 32-bit <dest_address>. These 
user parameters are first stored in the diagnostic buffer according to Table 3-48 below. 
Note that both <start_address> and <dest_address> may point to the VMIVME-2540 
local CPU memory: EPROM, I/O addresses, and static RAM. Refer to Local Address 
Decode on page 26 for a description of the VMIVME-2540 local CPU address space.

Execute: Command $1E - The Execute command instructs the VMIVME-2540 local 
CPU to simply jump to <dest_address> and resume execution. Note that 
<dest_address> is a 32-bit variable. The transfer to the <dest_address> is treated as a 
jump subroutine operation, and a return to normal operation can be accomplished 
with a M68000 RTS (return from subroutine) instruction. Use by the customer is not 
recommended. The diagnostic buffer entry is shown in Table 3-49 below.

Echo PC: Command $1F - The Echo PC command is a local CPU diagnostic technique 
and causes the local CPU to return its program counter value at the time the 
command interrupt occurred. The only situation in which the VMIVME-2540 local 
CPU will not respond to this command is when a fatal exception has occurred, the 
interrupts have been disabled, the front panel LED is on, and the 68HC000 CPU has 
just executed the STOP instruction. Use by the customer is not recommended.

Table 3-48  Block Move Diagnostic Buffer Entries

Variable Name Offset

Start_Address $0400

Dest_Address $0404

Qty_Words $0408

Table 3-49  Diagnostic Buffer Entry for Execute Command

Variable Name Offset

Dest_Address $0400
101



   3 VMIVME-2540 Intelligent Counter/Controller
Getting Started

The VMIVME-2540 Intelligent Counter/Controller board provides multiple input and 
output functionality, which leads to some complexity in its application. This section 
discusses the host program issues in the use of the VMIVME-2540 for waveform 
measurement, quadrature position control, and quadrature position measurement 
with only connections on the front panel. A digital storage oscilloscope is suggested 
for viewing waveforms during the demonstration. The most inexpensive way to make 
the interconnections on the VMIVME-2540 front panel is to use a female DIN 96-pin 
connector with wirewrap connections. A more appropriate method for integrating the 
VMIVME-2540 into a system is to use the VMIACC-BT04 Dual 96-pin Transition 
Panel, a 19-inch rack-mountable panel which breaks all 192 signals out from two DIN 
96-pin connectors to standard terminal blocks. Connection between the 
VMIACC-BT04 and the VMIVME-2540 front panel is made by 96-conductor ribbon 
cables, three foot length recommended. See Section 5.4 for more application data.

The example code will set up the VMIVME-2540 for the configuration shown in 
Table 3-50 below for example set 1 and the configuration shown in Table 3-51 below 
for example set 2. Note that example set 2 expects an optional external input for the 
QPM measurement, but the other features used in that example are provided by the 
code.

For example set 1, the channel 6 integer period measurement will use the same clock 
frequency (which sets the time base) as the QPC measurement channel. The channel 7 
integer period measurement will use the next higher clock frequency. For example set 
2, channel zero output is connected to the channel one gate input and channel one 
output is connected to the channel two gate input. Table 3-52 on page 103 presents the 
connections for example set 1 and Table 3-53 on page 103 presents the connections for 
example set 2.

Table 3-50   VMIVME-2540 Configuration Using Example Set 1 

Mode Channels

Quadrature Position Control 0, 1, 2, 3

Quadrature Position Measurement 4, 5

Integer Period Measurement 6

Integer Period Measurement 7

Table 3-51  VMIVME-2540 Configuration Using Example Set 2 

Mode Channels

Pulse Width Output 1

Frequency Divider 0

Event Counter 3

Floating Point Period Measurement 2

Quadrature Position Measurement 4, 5

Quadrature Position Control** 0, 1, 2, 3

NOTE: ** Optional selection with Channels 0 through 3 for this operation.
102



Getting Started 3
Note that in example set 1 configuration, the quadrature position control output 
signals (channels 0 and 2) are looped back to the quadrature position measurement 
inputs (channels 4 and 5), and that one of the quadrature output signals is also routed 
to period measurement inputs on channels 6 and 7. Since an RS-422 output is being 
routed to multiple RS-422 line receivers, termination resistor jumpers E36 and E39 
must be removed for proper operation. Jumper shunt E27 is left plugged in to 
terminate the line.

If the above RS-422 termination precautions are observed, the same connector used 
for example set 1 can be used for example set 2, and adding four additional 
connections to satisfy connections for both examples with parallel connections for 
example set 2. If external quadrature signals are used, then a separate connector is 
required for example set 2.

Table 3-52   Wire Connections - Example Set 1

From Signal Name From Pin Number To Pin Number To Signal Name

Out 1+ P3 - C4 P3 - B1 Gate 0+

Out 1- P3 - C5 P3 - B2 Gate 0-

Out 3+ P3 - C9 P3 - B7 Gate 2+

Out 3- P3 - C10 P3 - B8 Gate 2-

Out 0+ P3 - C1 P3 - A12 CLK 4+

Out 0- P3 - C2 P3 - A13 CLK 4-

Out 2+ P3 - C7 P3 - A15 CLK 5+

Out 2- P3 - C8 P3 - A16 CLK 5-

CLK 4+ P3 - A12 P3 - B17 Gate 6+

CLK 4- P3 - A13 P3 - B18 Gate 6-

Gate 6+ P3 - B17 P3 - B20 Gate 7+

Gate 6- P3 - B18 P3 - B21 Gate 7-

Table 3-53  Wire Connections - Example Set 2

From Signal Name From Pin Number To Pin Number To Signal Name

Out 1+ P3 - C4 P3 - A1 CLK 0+

Out 1- P3 - C5 P3 - A2 CLK 0-

Out 0+ P3 - C1 P3 - A9 CLK 3+

Out 0- P3 - C2 P3 - A10 CLK 3-

Out 3+ P3 - C9 P3 - B7 Gate 2+

Out 3- P3 - C10 P3 - B8 Gate 2-

Ext. Quadrature CW-Out+ P3 - A12 CLK 4+

Ext. Quadrature CW-Out- P3 - A13 CLK 4-

Ext. Quadrature CCW-Out+ P3 - A15 CLK 5+

Ext. Quadrature CCW-Out- P3 - A16 CLK 5-
103



   3 VMIVME-2540 Intelligent Counter/Controller
The header file and the host program, including the main routines and supporting 
subroutines are shown below.

/**********************************************************************************/
/*t2540.h   VMIVME-2540 Data Structures             */
/****************************************************************************/

#define USER_VECTOR_0 100   /* VMEbus vector - 1st user vector */

#define USER_VECTOR_1  101   /* VMEbus vector - 2nd user vector */

#define USER_VECTOR_2  102   /* VMEbus vector - 3rd user vector */

#define USER_VECTOR_3  103   /* VMEbus vector - 4th user vector */

#define USER_VECTOR_4  104   /* VMEbus vector - 5th user vector */

#define INTR_ENABLED  8    /* VMIVME-2540 interrupt enabled bit */

/* Interrupt priority levels/VME bus */

#define LEVEL_1     1

#define LEVEL_2     2

#define LEVEL_3     3

#define LEVEL_4     4

#define LEVEL_5     5

#define LEVEL_6     6

#define LEVEL_7     7

/* Define the available command code set - rev 1.23 and later */

#define disable_ch   0x00

#define event_16 0x01

#define event_lvl_16 0x02

#define event_32 0x03

#define event_lvl_32 0x04

#define event_lim_32 0x05

#define read_count 0x06

#define divider_16 0x07

#define divider_32 0x08

#define square_wave 0x09

#define pulse_train 0x0A

#define freq_gen 0x0B

#define duty_cycle 0x0C

#define peri_meas_16 0x0D

#define peri_meas_32 0x0E

#define freq_meas_16 0x0F

#define freq_meas_32 0x10

#define puls_meas_16 0x11

#define puls_meas_32 0x12

#define qpm 0x13

#define qpm_index 0x14

#define read_qpm 0x15

#define qpm_int 0x16

#define read_qpm_int 0x17

#define timer_16 0x18

#define timer_16r 0x19

#define disable_tmr 0x1A

#define initialize 0x1B
104



Getting Started 3
#define reset_resp 0x1C

#define block_move 0x1D

#define jump_to 0x1E

#define echo_pc 0x1F

#define int_peri_meas 0x20

#define puls_seq 0x21

#define output 0x22

#define qpc 0x23

#define group_acquire 0x24

#define event_timer 0x25

#define puls_meas_int16 0x26

#define peri_meas_int32 0x27

#define puls_meas_int32 0x28

/* Define the command status codes and CCB status code */

#define null 0x00

#define command_ack 0x01

#define count_ready 0x02

#define period_ready 0x03

#define freq_ready 0x04

#define width_ready 0x05

#define qpm_ready 0x06

#define limit_alarm 0x07

#define timer_alarm 0x08

#define ch_alloc_err 0x09

#define bounds_err 0x0A

#define period_err 0x0B

#define pulse_err 0x0C

#define freq_err 0x0D

#define scale_err 0x0E

#define qpm_err 0x0F

#define gate_err 0x10

#define limit_err 0x11

#define ch_active_err 0x12

#define req_denied  0x13

#define TRUE 0xFFFFFFFF

#define FALSE 0

struct vmivme_2540_regs {

unsigned short bid; unsigned short rev; unsigned short cmd;

unsigned short response; unsigned char resp_irq; unsigned char resp_vec;

unsigned char channel; unsigned char contdisc; unsigned short mflag;

unsigned char mchan; unsigned char mcode;

struct CH_CB {

unsigned char command; unsigned char gate_edge; unsigned char vme_irq;

unsigned char vme_vec;

union {
105



   3 VMIVME-2540 Intelligent Counter/Controller
unsigned char cp_b[12]; unsigned short cp_w[6]; unsigned int cp_l[3];

float cp_f[3];

} cp;

} ch_ccb[24];

struct TMR_CB {

unsigned char tcmd; unsigned char tgate; unsigned char vme_irq;

unsigned char vme_vec;

union  {

unsigned char tp_b[12]; unsigned short tp_w[6]; unsigned int tp_l[3];

float tp_f[3];

} tp;

} tmr_ccb[6];

unsigned char cd[24]; unsigned char flg[24];

};

typedef struct vmivme_2540_regs ICC;

/* Change the following vector to satify user configuration requirements */

/*********************************END OF t2540.h*****************************/

/*****************************************************************************
* File: gs.c 9/10/01 VMIC *
* *
* 100 Hz Periodic Interrupt using Timer1               *
* Example Set 1 *
* Quadrature Position Control on channels (0,1,2,3) *
* Integer Quadrature Position Measurement channels (4,5) *
* Integer Period Measurement w/200 ns clock on channel (6) measuring *
* QPC pulse width.      *
* Integer Period Measurement w/20 us clock on channel (7) measuring *
* Example Set 2  *
* Pulse train output on channel 1  *
* 16-bit frequency divider on channel 0  *
* 16-bit event count on channel 3  *
* Floating point period measurement on channel 2  *
* Integer Quadrature Position Measurement on channels (4,5) *                              
* with optional Quadrature Position Control (internal) on channels *
* 0,1,2,3(previous channels reconfigured). *
*****************************************************************************/

#include <stdio.h>

#include <string.h>

#include "t2540.h" 

/* The following routine allows the user to input a floating point number into a float variable 
gfp. */

#define getlong(a) scanf ("%8x", a)

#define getbyte(a) scanf ("%2d", &int_in); a = (unsigned char )int_in

#define getword(a) scanf ("%6d", &int_in); a = (short )int_in

#define getfp(a) scanf ("%12f", &a)

#define prompt(a) printf ("%s", a); scanf("%c", &byte_in);

ICC * brd = ((ICC *)(0xFB000000));   /* make VMEbus pointer */

char anykey[] = "\r\nPress any key to continue (x to terminate sequence)...";
106



Getting Started 3
unsigned short req_err /* Interrupt detected command status error */

resp_flg,  /* command status code */

word_in;  /* 16-bit variable for user input */

unsigned char ccb_status,

byte_in; /* byte variable for user input */

float float_in;/* float variable for user input */

unsigned int int_in; /* scanf input long int */

unsigned int time,   /* real-time clock ephemeris */

   timeout,     /* timeout after five seconds */

   ch0_cnt,     /* channel 0 ISR count semaphore */

   ch0_old,     /* channel 0 previous count */

   ch2_cnt,     /* channel 2 ISR count semaphore */

   ch2_old,     /* channel 2 previous count */

   ch4_cnt,     /* channel 4 ISR count semaphore */

   ch4_old;     /* channel 4 previous count */

void ex_set_1();

void ex_set_2();

void qpc_setup();

void com2540();

int init2540();

short qpc_delta;

unsigned short qpc_clks;

char qpc_flag;     /* qpm using internal(=1) or external (=0) */

unsigned char scale;  /* qpc/qpm clock period select code storage */

void

main (void)

{

unsigned char set_select;

if (init2540()) {

     printf ("...Exiting.");

     return;

}

ex_sel:

qpc_clks = 0;    /* initialize qpc clk count */

qpc_delta = 0;    /* initialize qpc delta clk count */

scale = 0;      /* initialize qpc clock select */

printf ("\r\nSelect example set to demonstrate (1 or 2): ");

getbyte (set_select);

if (set_select == 1) ex_set_1();

else if (set_select == 2) ex_set_2();

else {

 printf ("\r\nUnknown example set...");

}

prompt("\r\nEnter x to exit...any other key to re-select :");

if (byte_in != ’x’) goto ex_sel;

brd->resp_vec = 0; /* clear vector */
107



   3 VMIVME-2540 Intelligent Counter/Controller
brd->resp_irq = 0; /* clear level */

com2540 (initialize,0);

printf ("\r\nProgram terminating\r\n");

}

void

ex_set_1 (void)

{

unsigned int q5, told;

unsigned short p6, p7;

unsigned char s6, s7, pscale, pclock;

brd->contdisc = 0x0FF; /* CONT. MEAS. MODE */

com2540 (disable_ch, 4); /* issue a disable command */

com2540 (qpm_int, 4); /* Integer QPM on channel 4,5 */

pscale = 0;      /* Set previous clock select */

while (TRUE) {

printf ("\r\nEnter clock select code (1-5): ");

getbyte (scale);

brd->ch_ccb[0].gate_edge = scale;

if (scale != pscale) {

pclock = scale;

if (pclock == 1) pclock = 2; /* limit to lowest clock select */

com2540 (disable_ch, 6);  /* disable channel 6 */

  brd->ch_ccb[6].gate_edge = pclock-1;   /* use lower clock/ch6*/

com2540 (int_peri_meas, 6); /* Integer period meas on ch6 */

   com2540 (disable_ch, 7);  /* disable channel 7 */

brd->ch_ccb[7].gate_edge = scale; /* use same clock as QPC/ch7*/

com2540 (int_peri_meas, 7); /* Integer period meas on ch7 */

    pscale = scale; /* save this select */

}

qpc_setup();

told = time;

printf ("\r\n\n <4,5>  <6p> <6s> <7p> <7s>\n");

while (!kbhit()) {       /* terminate when keyboard hit */

if (time > told ) {   /* if timer ticked, */

 told = time;      /* read the clock  */

  q5 = brd->ch_ccb[5].cp.cp_l[0]; /* read all measurements */

 p6 = brd->ch_ccb[6].cp.cp_w[0];

 s6 = brd->ch_ccb[6].cp.cp_b[2];

p7 = brd->ch_ccb[7].cp.cp_w[0];

 s7 = brd->ch_ccb[7].cp.cp_b[2];

printf ("\r%.8X %.4X  %.2X  %.4X %.2X", q5,p6,s6,p7,s7);

       }

     }

prompt(anykey);

if (byte_in == ’x’) {

com2540 (disable_ch, 0);

com2540 (disable_ch, 4);

break;
108



Getting Started 3
}

qpc_clks = 0;    /* initialize qpc clk count */

qpc_delta = 0;    /* initialize qpc delta clk count */

}

return;

}

char qpm_option[] = "\r\nSelect QPM signal source "
          "internal (0) or external (1): ";

void

ex_set_2( void )

{

unsigned char i, per_clk;

unsigned short per_siz;

/* Example of Pulse Train Generation:
the user is prompted for period and pulse width, then
channel 1 is setup to generate the waveform.
The signals generated are OUT1+ at P3-C1 and OUT1- at P3-C2.

*/
com2540 (disable_ch, 1); /* disable channel before next command */
printf ("\r\nDemonstrating Pulse Train Generation on Channel 1 ...");
printf ("\r\nEnter Float Period value: ");
getfp (float_in);
brd->ch_ccb[1].cp.cp_f[0] = float_in;
printf ("\r\nEnter Float Pulse Width: ");
getfp (float_in);
brd->ch_ccb[1].cp.cp_f[1] = float_in;
com2540 (pulse_train, 1);
printf("\r\nPulse train active on Ch. 1.\r\n");
prompt(anykey);

 if (byte_in == ’x’)return;

/* Example of Frequency Division:
the user is prompted for a 16-bit hex divisor, then channel 0 is
configured for frequency division. Since channel 1 is already
generating a pulse train, it may be convenient for the user to 
connect the output of channel 1 to the clock input of channel 0, then
observe the resultant waveform at OUT0+ at P3-C1.

*/
com2540 (disable_ch, 0); /* always disable channel before next command */
printf ("\r\nDemonstrating Frequency Division on Channel 0 ...");
printf ("\r\nEnter 16-bit divider: ");
getword (word_in);
brd->ch_ccb[0].cp.cp_w[0] = word_in;
com2540 (divider_16, 0);
prompt (anykey);
if (byte_in == ’x’)return;

/* Example of 16-bit Event Counter:
count events up to a user-defined limit, then display message.
Current count displayed whenever a key is pressed. Event signal
inputs are CLK3+ at P3-A9 and CLK3- at P3-A10.

*/

com2540 (disable_ch, 3); /* disable channel before next command */

/*Note: Initialize all CCB parameters after each disable command. The
CCB is cleared with a disable command */
brd->ch_ccb[3].vme_vec = USER_VECTOR_2; /* Install CCB #0 interrupt vector */
109



   3 VMIVME-2540 Intelligent Counter/Controller
/*IRQ level 2, enabled */
brd->ch_ccb[3].vme_irq = INTR_ENABLED | LEVEL_2;
printf ("\r\nDemonstrating 16-bit event counting...");
printf ("\r\nEnter 16-bit Limit Count: ");
getword (word_in);
printf ("\r\n");
brd->ch_ccb[3].cp.cp_w[0] = word_in;
com2540 (event_16, 3);
ch0_old = ch0_cnt;     /* using the ch0 interrupt svc routine */
time = 0;
com2540 (read_count, 3);

while (!kbhit())    {

if (resp_flg == count_ready) {

 word_in = brd->ch_ccb[3].cp.cp_w[1];

printf ("\rChannel 0 event count: %.4X", word_in);

/*Check for the limit alarm each time count is updated. Alternatively
the loop could be structure to check through each "while" iteration. */
if (ch0_cnt > ch0_old) {
printf ("\r\nLimit count interrupt!\r\n");

alrm_clr:
brd->ch_ccb[3].cp.cp_b[8] = 0;
ch0_old = ch0_cnt;  /* reset interrupt counter */
time = 0;  /* reset timer */
}

else if (brd->ch_ccb[3].cp.cp_b[8] == limit_alarm) {
printf ("\r\nLimit alarm detected!\r\n");
goto alrm_clr;
}

     com2540 (read_count, 3);
     time = 0;    /* reset timer */
     }

else {
printf ("\r<read_cnt> Command status = %.2X",

resp_flg);
time = 0;
break;
}

if (time > 500) {
printf ("\r\nTimeout waiting on event count!");
break;
}
}

prompt(anykey);
if (byte_in == ’x’) return;

/*Example of Period Measurement:
  the user is prompted for measurement clock select code, 16-bit hex
  average number, and then channel 2 is setup for period measurement.
  Since channel 1 is already generating a waveform, it may be convenient
  for the user to connect the output of channel 3 to the gate input of
  channel 2, GATE2+ at P3-B7 and GATE2- at P3-B8.
*/

com2540 (disable_ch, 2); /* disable channel before next command */

/*user vector 3, IRQ level 3, enabled */
brd->ch_ccb[2].vme_vec = USER_VECTOR_3; /* Install CCB ch2 intr vec */
brd->ch_ccb[2].vme_irq = INTR_ENABLED | LEVEL_3;
printf ("\r\nDemonstrating Period Measurement on Channel 2 ...");
printf ("\r\nEnter clock select code [0..5]: ");
getbyte (byte_in);
per_clk = byte_in;
110



Getting Started 3
brd->ch_ccb[2].gate_edge = per_clk;
printf ("\r\nEnter sample size: ");
getword (word_in);
per_siz = word_in;
brd->ch_ccb[2].cp.cp_w[0] = per_siz;
ch2_old = ch2_cnt;
com2540 (peri_meas_16, 2);
printf("\r\nWaiting for initial measurement to be completed...");
time = 0;
while (!kbhit()) { /* loop which no key input */
if (resp_flg != command_ack) {

printf ("\r\nChannel status error = %d! ", ccb_status);
break;

}

if (ch2_cnt > ch2_old) { /* measurement complete interrupt */
ccb_status = brd->ch_ccb[2].cp.cp_b[8];

if (ccb_status != period_ready) {
printf ("\r\nChannel status error = %d! ", ccb_status);

break;

}

else {
 float_in = brd->ch_ccb[2].cp.cp_f[1];
printf("\r\nMeasured period is %e", float_in);

}
com2540 (disable_ch, 2);
brd->ch_ccb[2].vme_vec = USER_VECTOR_3; /* CCB ch2 intr vec */
brd->ch_ccb[2].vme_irq = INTR_ENABLED | LEVEL_3;
brd->ch_ccb[2].gate_edge = per_clk;
brd->ch_ccb[2].cp.cp_w[0] = per_siz;
com2540 (peri_meas_16, 2);
time = 0;
ch2_old = ch2_cnt;
}
if (time > 500)   {    /* Check time greater than 5 sec */
printf ("\r\nTimeout waiting for period measurement!\r\n");
break;
}
}
prompt(anykey);
if (byte_in == ’x’)return;

/*Example of Quadrature Position Measurement:
  The clockwise signals from the incremental encoder are attached to
  CLK4+ at P3-A12 and CLK4- at P3-A13, while the CCW signals connect to
  CLK5+ at P3-A15 and CLK5- at P3-A16.
  The user is prompted for floating point scale (deg/pulse) value,
  the clockwise limit angle, the counter-clockwise limit angle,
  and then the channel pair (4,5) is setup for QPM.
*/

   qpc_flag = 0;
   prompt(qpm_option);
   if (byte_in == ’0’)   {

   qpc_flag = 1;
   for (i = 0; i < 4; i++)
        com2540 (disable_ch, i);

   }
   com2540 (disable_ch, 4); /* disable channel before next command */
   com2540( disable_ch, 5 );
   brd->ch_ccb[4].vme_vec = USER_VECTOR_4; /* Install CCB ch4 intr vec */

/* IRQ level 4, enabled */
111



   3 VMIVME-2540 Intelligent Counter/Controller
   brd->ch_ccb[4].vme_irq = INTR_ENABLED | LEVEL_4;
   printf ("\r\nDemonstrating Quadrature Position Measurement"

       " on Channel 4 ...");
   printf ("\r\nEnter Float Scale value: ");
   getfp (float_in);
   brd->ch_ccb[4].cp.cp_f[0] = float_in;
   printf ("\r\nFloat CW Limit: ");
   getfp (float_in);
   brd->ch_ccb[4].cp.cp_f[1] = float_in;
   printf ("\r\nFloat CCW Limit: ");
   getfp (float_in);
   brd->ch_ccb[4].cp.cp_f[2] = float_in;
   com2540 (qpm, 4);
   ch4_old = ch4_cnt;
   if (qpc_flag) qpc_setup();
   printf ("\r\n");
   com2540 (read_qpm, 4);
   while (!kbhit()) {  /* do until key entered */

   if (ch4_old < ch4_cnt) {
     ch4_old = ch4_cnt;
     switch (brd->ch_ccb[4].gate_edge) {
      case 1 :

           printf ("\r\nClockwise 32-bit overflow!\r\n");
      break;
      case 2 :

           printf ("\r\nCounter-Clockwise 32-bit overflow!\r\n");
        break;
        case 3 :
           printf ("\r\nClockwise limit reached.\r\n");
        break;
        case 4 :
           printf ("\r\nCounter-Clockwise limit reached.\r\n");
        break;

       default: goto skpbreak;
       }
     }
     brd->ch_ccb[4].gate_edge = 0; /* acknowledge limit status */
skpbreak:

 if (resp_flg == qpm_ready) {
    float_in = brd->ch_ccb[5].cp.cp_f[0];
    printf ("\rChannel 4 Angular Position: %f", float_in);
 }
 else    {

        printf ("\r\n<read_qpm> Command status = %.2X", resp_flg);
        break;

 }
 com2540 (read_qpm, 4);

 }
 com2540 (disable_ch, 0);
 com2540 (disable_ch, 4);
 return;

}

void
qpc_setup(void)
{

/* If example set 1 not previously used, set default qpc clock select
  to 3 (20 usec period)        */
   com2540 (disable_ch, 0);
   if (scale == 0) scale = 3;
   brd->ch_ccb[0].gate_edge = scale;
   if (!qpc_clks) {
112



Getting Started 3
   printf ("\r\nEnter ch.0 qpc pulse width in clock pulses: ");
 getword (qpc_clks);
 brd->ch_ccb[0].cp.cp_w[0] = qpc_clks;

   }
   if (!qpc_delta) {
    printf ("\r\nEnter quadrature position delta: ");
    getword (qpc_delta);
    brd->ch_ccb[0].cp.cp_w[1] = qpc_delta;

   }
   com2540 (qpc, 0);      /* Quadrature Position Control on ch0 */
}

/* Timer interrupt service routine */

#pragma interrupt()
void
time_isr (void)
{
   time++;
}

/* Command status return interrupt service routine */
#pragma interrupt()
void
resp_isr( void )
{

resp_flg = brd->response & 0x1F;
   if (resp_flg > qpm_ready) {
     req_err = 1;
   }
}

/* Channel measurement interrupt service routines */

#pragma interrupt()
void
ch0_isr (void)
{
   ch0_cnt++;
}
#pragma interrupt()
void
ch2_isr (void)
{
   ch2_cnt++;
}
#pragma interrupt()
void
ch4_isr (void)
{
   ch4_cnt++;

}

void
com2540 (unsigned short command, unsigned char chan)
{
   unsigned int tcmd, tcur, timeout;

   timeout = 5.0; /* set a 50 millisecond timeout */
   req_err = 0;

resp_flg = 0xFF;
   brd->channel = chan;
   brd->cmd = command;

/* To allow program exit with interrupts inactive, check a null vector */
    if (brd->resp_vec == 0)return; /* return if no active vector */
    tcmd = time;          /* read initial time */
    while (resp_flg == 0xFF) {
113



   3 VMIVME-2540 Intelligent Counter/Controller
      tcur = time;      /* read current time */
      if ((tcur - tcmd) > timeout) {
        printf ("\r\n<com2540> Reset command status timeout!!\r\n");
        while (!kbhit()); /* wait for user to hit a key */
        return;

      }
  }

    if (req_err) {
      printf ("\r\nCommand Status Error Code: ");
      switch (resp_flg) {
        case ch_alloc_err : printf ("Channel Allocation Error!\r\n");
        break;
        case bounds_err : printf ("Bounds Error!\r\n");
        break;
        case period_err : printf ("Period Error!\r\n");
        break;
        case pulse_err : printf ("Pulse Width Error!\r\n");
        break;
        case freq_err : printf ("Frequency Error!\r\n");
        break;
        case scale_err : printf ("Scale Error!\r\n");
        break;
        case qpm_err : printf ("QPM Error!\r\n");
        break;
        case gate_err : printf ("Gate Error!\r\n");
        break;
        case limit_err : printf ("Limit Error!\r\n");
        break;
        case ch_active_err : printf ("Channel Active Error!\r\n");
        break;
        case req_denied : printf ("Request Denied!\r\n");
        break;
      default: printf ("Command status =.2x", resp_flg);
      }
      while (!kbhit()); /* wait for user to hit a key */

    }
    return;
}

int
init2540 (void)
{

    unsigned char id, option;

time = 0;
ch0_cnt = 0;
ch0_old = 0;
ch2_cnt = 0;
ch2_old = 0;
ch4_cnt = 0;
ch4_old = 0;
printf ("\r\nEnter board address \(%.8X\): ", brd);
getlong ((unsigned int *) &brd);
id = (unsigned char )(brd->bid >> 8);
option = (unsigned char)(brd->bid & 0xff);
if (id != 0x25) {
printf("\r\nNot a VMIVME-2540 ID @ %08x", brd);
return (TRUE);

}
if (option < 1) {
printf("\r\nVMIVME-2540 option will not support this program");
return (TRUE);

}

114



Getting Started 3
setvect (USER_VECTOR_0, &resp_isr ); /* install response ISR */
brd->resp_vec = USER_VECTOR_0;    /* assign vector to IRQ */
brd->resp_irq = 0x09;        /* put response on IRQ 1 */
com2540 (initialize, 0);       /* 2540 asserts RESP_irq */
                     /* when done */

printf ("\r\nInitializing timer...");
setvect (USER_VECTOR_1, &time_isr); /* install timer ISR label */
brd->tmr_ccb[1].vme_vec = USER_VECTOR_1;

brd->tmr_ccb[1].vme_irq = 0x0A; /* put timer on IRQ 2 level */

brd->tmr_ccb[1].tp.tp_f[0] = 0.01; /* 100 Hz timer interrupt  */

brd->channel = 1; /* point to timer 1     */

brd->cmd = timer_16r /* and start clock ticking */

while (time < 2);   /* wait for first 2 ticks  */
setvect (USER_VECTOR_2, &ch0_isr);   /* install ch0 ISR label */
setvect (USER_VECTOR_3, &ch2_isr);   /* install ch2 ISR label */
setvect (USER_VECTOR_4, &ch4_isr);   /* install ch4 ISR label */
return(FALSE);

}

/******************************* END of gs.c ******************************/

The example program was compiled in a cross-compilation environment for a 
single-board processor (SPB) M68030 target. Certain functions are machine or OS 
dependent and may require modification to function properly in the user’s 
environment. In particular, the function kbhit() returns a null if no key is entered 
and the character if a key is entered.

Timer 1 is used by the routine as the source of the polling interrupt. Thus, its ISR 
merely increments a variable. The command status ISR does more than just read the 
command status code, every error response is decoded fully and printed to the screen. 
It is recommended that the user program provides for error detection and processing 
for all command and channel status data acquisition software for the VMIVME-2540 
since error detection decreases debug time. If the host CPU has an on-board timer 
interrupt source, it is not necessary to program the VMIVME-2540 for the timer 1 
function.

The com2540() routine is the recommended algorithm for the VMIVME-2540 
command/command status processing protocol. Both the reset command status and 
user command routines are bounded by the time variable, allowing no more than 
5 seconds to elapse before reporting a timeout fault. Again, error detection decreases 
debug time.

The init2540() routine initializes the base address of the VMIVME-2540, then 
installs the response ISR and the timer 1 ISR. The command status interrupt uses 
VMEbus IRQ1, while the timer 1 interrupt uses IRQ2. The command status interrupt 
can be replaced with a polling function; however, obtaining the command status 
codes via the interrupt handler simplifies the process and maximizes efficiency for the 
VMIVME-2540 communication interface. 

The main routine prompts the user for the selection of example set to be executed. 
Example_set_1 sets up the measurement functions for continuous measurement 
mode. For the purpose of this example, the most recent value of each measurement is 
merely read at a 100 Hz rate and printed to the screen. The continuous mode flags/
channel data validity flags/measurement queue data ready flags were not used in the 
example, but generally one of the available flags should be used for detection of data 
measurement update by the local CPU. The integer measurement modes were chosen 
for this example to emphasize their speed and simplicity of programming. 
115



   3 VMIVME-2540 Intelligent Counter/Controller
Note that both the data and status are printed to the screen for integer period 
measurement on channels 6 and 7, data under the banner of 6_p and 7_p and status 
under the 6_s and 7_s banner. This arrangement allows the host CPU to continuously 
measure the period of an arbitrary waveform with high resolution over a broad range 
of time: from 400 ns to 13:1 ms with 200 ns resolution, and 13:1 ms to 1.31 s with 20 µs 
resolution. The host CPU always reads the four locations at each iteration, displaying 
the data from channels 6 and 7 with a status code of period ready or scale error after the 
delta angle of the QPC command has completed. Although the integer period 
measurement could have been programmed for autoranging using only one channel 
of the VMIVME-2540, the autoranging code requires a minimum of two input signal 
periods each time the clock frequency is changed when the autoranging is selected for 
the measurement. The example approach ensures the lowest latency between 
measurement updates for the host CPU.

This configuration for the VMIVME-2540 is usable for real-time motion control 
system with a position control loop update requirement of 100 Hz. In lieu of 
connecting the quadrature position output control signals to the integer QPM 
channels of the front panel connector, the signals could be connected to a motor for 
position and rate control.  An incremental encoder on the elevator could provide both 
linear position measurement to the integer QPM channels and velocity feedback to 
the period measurement channels. By removing the printf statement from the main 
polling loop, the sampling frequency could easily be increased to 1,000 Hz.

Example_set_2 demonstrates the pulse train operation, frequency divider operation, 
event count operation, period measurement operation, and an addition example of 
quadrature measurement operation. This example set prompts the user for the 
parameter set associated with each of the operations, then performs a single 
measurement for each of the input operations. The example sets up a signal output on 
channel one (pulse train) from user-specified parameters, divides this signal by a 
user-specified divider on channel 1, inputs this divided signal on channel 3 for event 
counting with a user-specified limit, routes the channel 3 event count output signal to 
channel 2 for a period measurement. Note that this routing has the effect of providing 
a time duration for the event limit to occur. The example is not intended to represent 
any practical application, but to familiarize the user with the use of the product.

Appendix A presents the terminal output and a set of parameters using the above 
example program. Appendix A also contains a program which supports all CCB 
operations of the VMIVME-2540. No interrupts are used; this program relies 
completely on polling of CCB status and command status for all functions.

The VMIVME-2540 local CPU is a 68HC000 processor with no floating-point 
coprocessor, which adds many additional instruction cycles to each VMIVME-2540 
measurement process for floating-point computations. This results in lower data 
throughput rates. The integer input operations should be used where feasible, and the 
floating-point math should be performed by the host CPU to achieve the highest 
possible data throughput rates using the VMIVME-2540.
116



CHAPTER

A
Appendix
Example Code
Contents

Terminal Output of Program gs.c  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
117



A VMIVME-2540 Intelligent Counter/Controller
Terminal Output of Program gs.c

Enter board address (FB000000): fb200000 <-
Initializing timer...
Select example set to demonstrate (1 or 2): 1       <-
Enter clock select code (1-5): 3              <-
Enter qpc pulse width in clock pulses: 200         <-
Enter quadrature position delta: 2000
           <-
 <4,5>  <6p> <6s> <7p> <7s>
00000021 0FA0  03  0190 03                  *
000007D0 FFFF  0E  FFFF 0E               * <-  

Press any key to continue (x to terminate sequence)...  <-
Select example set to demonstrate (1 or 2): 2 <-
Demonstrating Pulse Train Generation on Channel 1 ...
Enter Float Period value: .001 <-
Enter Float Pulse Width: .0005 <-
Pulse train active on Ch. 1.

Press any key to continue (x to terminate sequence)...  <-
Demonstrating Frequency Division on Channel 0 ...
Enter 16-bit divider: 2                  <-
Press any key to continue (x to terminate sequence)...  <-
Demonstrating 16-bit event counting...          
Enter 16-bit Limit Count: 300 <-
Channel 0 event count: 0123
Limit count interrupt!
Channel 0 event count: 0129
Limit count interrupt!
Channel 0 event count: 001A                <-
Press any key to continue (x to terminate sequence)...  <-
Demonstrating Period Measurement on Channel 2 ...     
Enter clock select code [0..5]: 3 <-
Enter sample size: 0                    <-
Waiting for initial measurement to be completed...
Measured period is 6.000000e-01
Measured period is 6.000000e-01
Measured period is 6.000000e-01              <-
Press any key to continue (x to terminate sequence)...  <-
Select QPM signal source internal (0) or external (1): 0  <-
Demonstrating Quadrature Position Measurement on Channel 4 ...
Enter Float Scale value: .0125               <-
Float CW Limit: 100.0                   <-
Float CCW Limit: 100.0                   <-
Enter qpc pulse width in clock pulses: 200         <-
Enter quadrature position delta: 20000           <-
Channel 4 Angular Position: 99.812500             *
118



Terminal Output of Program gs.c A
Clockwise limit reached.
Channel 4 Angular Position: 250.05000           * <- 
Enter x to exit...any other key to re-select : x     <-
Program terminating
<- Denotes a key entry including parametric entries with carriage return, space with
carriage return or carriage return.
*Denotes multi-reading display line.
119



A VMIVME-2540 Intelligent Counter/Controller
Programming Example

/***  Name: Test2540.c  Demonstration Program for VMIVME-2540 board

    Description: This software was written to accommodate all the
           features of the 2540 product. To accomplish this
           objective, the program makes extensive use of
           pointers to all the data types and parameters
           in the CCB area of the shared memory space
           contained on the VMIVME-2540 board and uses
           many byte arrays to define data attributes. This
           approach allows any channel to be configured for
           any operation, with prompt provide to allow the
           function selection. This approach would not be
           necessary in a given application for the board,
           allowing a much simpler program to be used for
           dedicated channel operation. All pointers
           required for any operation are computed at the
           entry of the user-selected channel number, with
           the pointers computed as a function of the channel
           number for the subsequent operation. The program
           uses polling exclusively, and uses delay loop counts
           for paced access to the board.

    Notes: The program is code for a board base address of 0xFB200000.
   To accommodate another address, change BASE_ADDRESS prior to compilation.
 ***/

#define BASE_ADDRESS 0xFB200000
#define MAXACC  20
#define MAX_MWAIT 2000000000
#define MAX_CMD_RESP 200
#define MIN_DELAY 100  /* minimum delay of 50 usec */
#define NULL   0x00
#define FALSE  0
#define TRUE  -1
#define VAL_ID  0x25
#define BRD_OPT 0x03
#define DISABLE_CH 0x00
#define EVENT_16 0x01
#define EVENT_16_GATE 0x02
#define EVENT_32 0x03
#define EVENT_32_GATE 0x04
#define READ_CURR_EVT_CNT 0x06
#define FREQ_DIV_16 0x07
#define FREQ_DIV_32 0x08
#define SQ_WAVE 0x09
#define PULS_TRAIN 0x0A
#define FREQ_GEN 0x0B
120



Programming Example A
#define DUTY_CYCLE 0x0C
#define MEAS_FLT_PER 0x0D
#define MEAS_FLT_PER_ENH 0x0E
#define MEAS_FLT_FREQ 0x0F
#define MEAS_FLT_FREQ_ENH 0x10
#define MEAS_PULS_WIDTH_FLT 0x11
#define MEAS_PULS_WIDTH_FLT_ENH 0x12
#define MEAS_QUAD_POS_FLT 0x13
#define READ_QUAD_POS_FLT 0x15
#define MEAS_QUAD_POS_INT 0x16
#define READ_QUAD_POS_INT 0x17
#define TIMER_INTERRUPT_SNG 0x18
#define TIMER_INTERRUPT_MULT 0x19
#define DISABLE_TIMER 0x1A
#define INITIALIZE 0x1B
#define RESET_STATUS 0x1C
#define BLOCK_MOVE 0x1D
#define EXECUTE 0x1E
#define ECHO_PC 0x1F
#define MEAS_PER16 0x20
#define PULS_SEQ 0x21
#define PGM_IO 0x22
#define QUAD_POS_CTL 0x23
#define GROUP_ACQ 0x24
#define EVENT_DELAY_TRIG 0x25
#define MEAS_PULS_WIDTH_INT 0x26
#define MEAS_PER32 0x27
#define MEAS_PUL32 0x28
#define ACT_HI  0x00
#define ACT_LO  0x20
#define MEAS_RDY 0xFF
#define TFLAG 0xFF
#define ACK 0x01
#define EVT_RDY 0x02
#define PER_RDY 0x03
#define FRQ_RDY 0x04
#define PUL_RDY 0x05
#define QPM_RDY 0x06
#define LIM_ALARM 0x07
#define INT_32 1
#define INT_16 2
#define FLT_32 3
#define SINT_32 4
#define DUAL_SINT_32 5
#define INPUT 0
#define OUTPUT 0xFF
#define PRE_SCALE 0xFF
#define RESTART -1
#define EXIT -2
#define NUM_INPUTS 18
121



A VMIVME-2540 Intelligent Counter/Controller
#define SNGL 0
#define DUAL 1

/* Define flags for input operation mode */
#define CCB_STAT 0x01
#define MFLAG 0x02
#define MQUEUE 0x04
#define CONTINUOUS 0x80      /* opn_flag: continuous mode indicator */
#define OPN_COMPLETE 0xFF
#define DISCRETE 0x10       /* opn_flag: discrete mode */
#define SET_UP 0x08        /* opn_flag: setup only */

/* Define the configuration channel size for each option */
char *nchptr[] = { "4", "8", "16", "24" };

/* Define the command status and CCB status codes indexed by code */
char *diag_msg[] = { "", "Command Acknowledge", "Event count ready",
        "Period Measurement ready","Freq. Measurement ready",
        "Pul. Wdth. Measurement ready", "Quad. pos. measurement ready",
        "Limit Alarm", "Timer Alarm", "Channel Allocation error",
        "Bounds error", "Period error", "Pulse Width error",
        "Freq. error", "Scale error", "Quad. Pos. meas. error",
        "Gate error", "Limit error", "Active channel error",
        "Request Denied", "Under-range measurement",
        "QPM clockwise overflow", "QPM counter-clockwise overflow" };

/* Define a message timeout error code string */
char timer_str[] = "Measurement flag timeout\r\n";

/* Message for any code not in above list */
char unk_str[] = "Unknown return code\r\n";

/* Define the quadrature messages codes */
char *quad_diag[] = { "", "Clockwise 32-bit Overflow", "Counterclockwise"
           " 32-bit overflow", "Clockwise Limit Exceeded",
           " Counterclockwise limit exceeded" };

/* Define any fatal/non-fatal attribute for each error code */
char fatal_flg[] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
           FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
           TRUE, TRUE, TRUE, FALSE };
char chnl_active[24] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
    FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
    FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE };

/* define an array of address (1 for each channel) which point to the meas.
  location in the CCB. */
unsigned char *chnl_meas_ptr[24] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };
122



Programming Example A
/* define an array of addresses (1 per channel) which point to CCB status */
unsigned char *chnl_status_ptr[24] = { NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };

/* define the commands by program index */
unsigned char cmd_sel[27] = { MEAS_PER32, MEAS_PUL32, MEAS_PER16, MEAS_FLT_PER,
     MEAS_FLT_PER_ENH, MEAS_FLT_FREQ, MEAS_FLT_FREQ_ENH, EVENT_16,
     EVENT_32, MEAS_PULS_WIDTH_FLT, MEAS_PULS_WIDTH_FLT_ENH,
     MEAS_QUAD_POS_FLT, MEAS_QUAD_POS_INT, GROUP_ACQ,READ_CURR_EVT_CNT,
     READ_QUAD_POS_FLT,READ_QUAD_POS_INT, EVENT_DELAY_TRIG, SQ_WAVE,
     PULS_TRAIN, FREQ_GEN, DUTY_CYCLE, PULS_SEQ, FREQ_DIV_16,
     FREQ_DIV_32, PGM_IO, QUAD_POS_CTL };
unsigned char cmd_index_tbl[41] = { FALSE, 7, 7, 8, 8, FALSE, 14, FALSE,
     FALSE, FALSE, FALSE, FALSE, FALSE, 3, 4, 5, 6, 9, 10, 11, FALSE,
     FALSE, 12, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
     FALSE, 2, FALSE, FALSE, FALSE, 13, 17, FALSE, 0, 1 };

/* define the data types for screen display */
char opn_data_types[27] = { INT_32, INT_32, INT_16, FLT_32, FLT_32, FLT_32,
            FLT_32, INT_16, INT_32, FLT_32, FLT_32, FLT_32,
            SINT_32, DUAL_SINT_32, FLT_32, FLT_32, SINT_32,
            FLT_32, FLT_32, FLT_32, FLT_32, FLT_32, FLT_32,
            FLT_32, FLT_32, FLT_32, SINT_32 };

/* flag the command types needing a pre-scalar */
char prescl_flg[27] = { NULL, NULL, NULL, NULL, PRE_SCALE, NULL, PRE_SCALE,
    NULL, NULL, NULL, PRE_SCALE, NULL, NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };

/* flag the command types that use period measurement floating point */
char flt_per_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
             NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
             NULL, NULL, FLT_32, FLT_32, NULL, NULL, NULL, NULL,
             NULL, NULL, NULL };
/* flag the command types that use frequency measurement floating point */
char flt_frq_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
             NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
             NULL, NULL, NULL, NULL, FLT_32, FLT_32, NULL, NULL,
             NULL, NULL, NULL };

/* flag the command types that use pulse width measurement floating point */
char flt_pw_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, FLT_32, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL };

/* flag the command types that use 16-bit and 32-bit frequency division */
char freq_div_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
123



A VMIVME-2540 Intelligent Counter/Controller
             NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
             NULL, NULL, NULL, NULL, NULL, NULL, NULL, INT_16,
             INT_32, NULL, NULL };
/* flag the command types that use gate input signals */
char gate_flg[27] = { NULL, TFLAG, NULL, NULL, NULL, NULL, NULL, TFLAG,
           TFLAG, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL, NULL, NULL };
/* flag the command types that use clock selects */
char clock_flg[27] = { TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, NULL,
            NULL, TFLAG, TFLAG, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, TFLAG, NULL, NULL,
            NULL, TFLAG };
/* flag the command types that use limit parameters */
char lim_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, TFLAG,
           TFLAG, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL };
/* flag the command types that use a duty_cycle parameter */
char duty_cyc_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
          NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
          NULL, NULL, NULL, NULL, TFLAG, NULL, NULL, NULL, NULL,
          NULL };
/* flag the command types that use clocks counts high and low for signal def */

char clock_sel_flg[27] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
           NULL, NULL, NULL, NULL, NULL, TFLAG, NULL, NULL, NULL,
           NULL };
/* flag the command types that use sample sizes */
char sampl_flg[27] = { NULL, NULL, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, NULL,
            NULL, TFLAG, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL };
/* flag the command types where continuous/discrete is applicable */
char cont_flg[27] = { TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG,
            TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG, TFLAG,
            TFLAG, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
            NULL, NULL };

/* define the measure status expected for normal measurement completion */
unsigned char stat_sel[27] = { PER_RDY, PUL_RDY, PER_RDY, PER_RDY, PER_RDY,
                FRQ_RDY, FRQ_RDY, EVT_RDY, EVT_RDY, PUL_RDY,
                PUL_RDY, QPM_RDY, QPM_RDY, QPM_RDY, EVT_RDY,
                QPM_RDY, QPM_RDY, LIM_ALARM, NULL, NULL, NULL,
                NULL, NULL, NULL, NULL, OPN_COMPLETE };

/* Define all prompt message strings */
char sel_period[] = "\r\nSelect the period desired (Sec. - xxx.yy): >";
char sel_freq[] = "\r\nSelect the frequency desired (Hz. - xxx.yy): >";
124



Programming Example A
char sel_puls_width[] = "\r\nSelect the pulse width desired (Sec. - xxx.yy): >";
char sel_duty_cycle[] = "\r\nSelect the duty cycle desired (\% - xxx.yy): >";
char sel_high_clocks[] = "\r\nSelect high level duration"
    " (number of clocks): >";
char sel_low_clocks[] = "\r\nSelect low level duration"
    " (number of clocks): >";
char sel_total_dur[] = "\r\nSelect total pulse sequence duration (2-32767) : >";
char div_prm[] = "\r\nEnter Divisor: >";
char opn_type[] = "\r\n\nSelect operation type\r\n"
   " (0 = INPUT; 1 = OUTPUT; 2 = DISABLE): >";
char meas_type[] = "\r\n\nSelect Measurement Type\r\n"
" 0 = 32-bit Integer Period     1 = 32-bit Integer Pulse Width\r\n"
" 2 = 16-bit Integer Period     3 = Floating Period\r\n"
" 4 = Enhanced Floating Period   5 = Floating Frequency\r\n"
" 6 = Enhanced Floating Frequency  7 = 16-bit Integer Event Count\r\n"
" 8 = 32-bit Integer Event Count  9 = Floating Pulse Width\r\n"
" 10 = Enhanced Floating Pulse   11 = Quad Pos. Floating Measurement\r\n"
" 12 = Quad Pos. Integer Measuremnt 13 = Quad Group Acquisition\r\n"
" 14 = Read Current Event Count   15 = Read Quad Position Float\r\n"
" 16 = Read Quad Position Int.   17 = Event Delay Trigger\r\n"
">";
char output_type[] = "\r\nSelect Output Operation\r\n"
" 0 = Square Wave (50/50)    1 = Pulse Train\r\n"
" 2 = Frequency  (50/50)     3 = Duty Cycle\r\n"
" 4 = Pulse Sequence        5 = 16 bit Frequency Divider\r\n"
" 6 = 32-bit Frequency Divider   7 = Programmed Output\r\n"
" 8 = Quadrature Position Control\r\n"
">";
char qpc_pw_sel[] = "\r\nSelect the output pulse width (as the number of\r\n"
          "clock source cycles): >";
char qpc_delta_sel[] = "\r\nSelect the delta position (in output pulses): >";
char qpc_pos_sel[] = "\r\nSelect the current position location (in output\r\n"
           " cycles): >";
char wait_outmsg[] = "\r\nWait for the angle change to complete (y or n): >";
char opn_prm[] = "\r\n\nSelect input operation mode\r\n"
        "(0 = single; 1 = continuous; 2 = setup only; "
        "3 continuous-setup): >";
char chnnum[] = "\r\n\nEnter Channel number: >";
char sel_pulse[] = "\r\nSelect active gate level/active clock edge\r\n"
 "(0 = active high gate/rising clock; 1 = active high gate/falling clock;\r\n"
 " 2 = active low gate/rising clock; 3 = active high gate/falling clock):\r\n"
 " 4 = no active gating: >";
char sel_clock[] = "\r\n"
  "Select clock frequency desired (0 = autoranging; 1 = 200 nsec.;\r\n"
  "2 = 2 usec.; 3 = 20 usec; 4 = 200 usec.; 5 = 2 msec.): >";
char sel_limit[] = "\r\nSelect limit for the limit alarm: >";
char sel_level[] = "\r\nSelect output level (0 = low; 1 = high): >";
char mode_prm[] = "\r\n\nEnter mode (0 = report every measurement;"
         " 1 = average \"N\" measurement;"
         "\r\n 2 = discard \"N\" measurements) : >";
125



A VMIVME-2540 Intelligent Counter/Controller
char sampl_prm[] = "\r\nEnter sample size (0-65535): >";
char prescale[] = "\r\nEnter a prescaler choice (0-65535): >\r\n";
char pang_lim_sel[] = "\r\nEnter clockwise angle limit: >";
char nang_lim_sel[] = "\r\nEnter counter-clockwise angle limit: >";
char scale_sel[] = "\r\nEnter a scale facter (degrees/pulse): >";
char sel_clock_edge[] = "\r\nSelect the desired input edge\r\n"
    "(0 = falling; 1 = rising): >";
char spres_flag[] = "\r\nRetriggering suppressed (y or n)? >";
char sel_delay_time[] = "\r\nEnter the desired delay from the input edge\r\n"
    "in seconds (xx.yyyyy): >";
char status_poll[] = "\r\n"
        "Poll the CCB status (1), Measure Ready flag (2) or\r\n"
        "Measurement Queue flag (3): >";
char display_meas[] = "\r\n"
        "Display the measurement data (y/n)";
char restart_opt[] = "\r\nAutomatic restart (y or n): >";
char cont_meas[] = "\r\nContinue operations on active channel (y or n)? >";
char operation_sel[] = "\r\nEnter:\r\n"
   "\"r\" to disable;\r\n"
   "\"a\" to select another channel with current channel active;\r\n"
   "\"c\" to continue with current channel measurements;\r\n"
   "\"x\" to exit;\r\n"
   "any other key for disable/enable restart sequence...\r\n"
   "> ";
char continue_msg[] = "\r\nEnter \"y\" to continue from current position,"
           "\"n\" to re-initialize: >";
char anykey[] = "\r\nPress any key to continue\r\n";
char invalid_sel[] = "\r\nInvalid selection - Re-enter\r\n";
char inv_lvl[] = "\r\nInvalid entry for this operation - Re-enter\r\n";
char inv_brd_id[] = "\r\nBoard installed has incorrect ID code.\r\n";

struct vmivme_2540_regs {
    unsigned short bid; unsigned short rev; unsigned short cmd;
    unsigned char unused; unsigned char response; unsigned char resp_irq;
    unsigned char resp_vec; unsigned char channel; unsigned char contdisc;
    unsigned short mflag; unsigned char mchan; unsigned char mcode;
  struct CH_CB {
    unsigned char command; unsigned char gate_edge; unsigned char vme_irq;
    unsigned char vme_vec;
  union {
    unsigned char cp_b[12]; unsigned short cp_w[6]; unsigned int cp_l[3];
    float cp_f[3];

} cp;
   } ch_ccb[24];
   struct TMR_CB {
    unsigned char tcmd; unsigned char tgate; unsigned char vme_irq;
    unsigned char vme_vec;
   union  {
    unsigned char tp_ub[12]; char tp_b[12]; unsigned short tp_uw[6];
    short tp_w[6]; unsigned int tp_ul[3]; int tp_l[3];
126



Programming Example A
    float tp_f[3];
    } tp;
   } tmr_ccb[6];
    unsigned char cd[24];   unsigned char valid_flgs[24];
    unsigned char reserv[480];    unsigned short diag_bufr[32];
} *brd_ptr = (struct vmivme_2540_regs *)BASE_ADDRESS;

char wait_for_resp(), wait_for_meas(), poll_resp_code();
int prompti();
float promptf();
void wait_for_valid(), print_meas(), access_delay();

short ncounts;
static int ccb_length = 16;
unsigned char meas_st, *meas_addr, poll_flag, active_cmd, meas_cmd;

unsigned char *mstatus, *cvalue, *valid_flg, *brd_id_ptr,
       *clk_value, *con_disc, *curr_cmd, *curr_op_mode;

unsigned char clock_sel, data_typ, data_dir, chnl_cmd, read_opn, clk_edge,
       restart, opn_flag, sflag;

char dis_flag;

unsigned short *diagnostics, *command, *svalue, *freq_div;

/* Allocate pointers to access the various parameter types */
unsigned char *uc_ptr0, *uc_ptr1, *uc_ptr2, *uc_ptr4, *uc_ptr5,
       *uc_ptr8, *uc_ptr10;
short *s_ptr0, *s_ptr1;
unsigned short *us_ptr0, *us_ptr1, *us_ptr2, *us_ptr5;
unsigned int *ul_ptr0, *ul_ptr1;
float *flt_ptr0, *flt_ptr1, *flt_ptr2;

/* allocate variables for entry by user */
short qpc_delta;
unsigned short qpc_puls_cnt;
int qpc_position, *slvalue, *slvalue1;
float freq_sel, puls_sel, pos_ang_lim, neg_ang_lim, ang_scale, tdelay;

/* Allocate pointers to selected channels */
struct CH_CB *brd_chnl, *brd_chnl1;

void
main()
{
    static char opt_chnls[4] = { 4, 8, 16, 24 };
    int ntime, cmd_index, act_pulse, act_chnl, in_samp, op_type,
      op_mode, pscale_clk, max_chnls;
    unsigned char brd_id, out_level, m_mode, res_flag;
127



A VMIVME-2540 Intelligent Counter/Controller
    short cmd_wait, i;
    unsigned short clk_low, clk_high, clk_dur;
    unsigned long f_divisor, limit;
    char in_char, ch_opt, div_flag, cmd_status, wait_out, quad_con;
    unsigned int *ev_32_lim_ptr;

    command = (unsigned short *)&brd_ptr->cmd;
    diagnostics = (unsigned short *)&brd_ptr->diag_bufr[0];

begin:

/* Display board menu */
sel_chn:
    res_flag = FALSE;
    act_chnl = prompti(chnnum);   /* prompt for channel number */
    if (act_chnl == EXIT)return;

/* Now access the board, retrieving the ID and option and allow enough
  time for board to complete initialization (if it was reset/power-on). */
    brd_id_ptr = (unsigned char *)&brd_ptr->bid;
    while (*brd_id_ptr != VAL_ID)   {
      ntime--;
      access_delay();
      if (ntime <= 0) {
        fast_print(inv_brd_id);
        return;    }
    }
    con_disc = &brd_ptr->contdisc;  /* set continuous discrete flag ptr */
    brd_ptr->channel = act_chnl;   /* set pointer to selected channel */
    ch_opt = *(brd_id_ptr+1);    /* retrieve board option */
    max_chnls = (int )opt_chnls[ch_opt];  /* retrieve number of channels */
    printf("\r\nNumber of channels = %2d", max_chnls);
    if (act_chnl > max_chnls)    {   /* check selected channel */
      fast_print(invalid_sel);
      goto sel_chn;        }

/* First send the reset command status code */
    *command = (unsigned short )RESET_STATUS;
    if (wait_for_resp())goto sel_chn;

/* set the active channel number in the header shared memory space */
    brd_ptr->channel = act_chnl;

/* set default non-read operation flag */
    read_opn = FALSE;

/* set default zero length pulse width */
    act_pulse = 0;
    valid_flg = &brd_ptr->valid_flgs[act_chnl];
    brd_chnl = &brd_ptr->ch_ccb[act_chnl];
128



Programming Example A
    brd_chnl1 = &brd_ptr->ch_ccb[act_chnl+1];
    curr_cmd = (unsigned char *)&brd_chnl->command;
    cvalue = (unsigned char *)&brd_chnl->gate_edge;
    uc_ptr0 = &brd_chnl->cp.cp_b[0];
    uc_ptr1 = &brd_chnl->cp.cp_b[1];
    uc_ptr2 = &brd_chnl->cp.cp_b[2];
    uc_ptr4 = &brd_chnl->cp.cp_b[4];
    uc_ptr5 = &brd_chnl->cp.cp_b[5];
    uc_ptr8 = &brd_chnl->cp.cp_b[8];
    uc_ptr10 = &brd_chnl->cp.cp_b[10];
    flt_ptr0 = (float *)uc_ptr0;
    flt_ptr1 = (float *)uc_ptr4;
    flt_ptr2 = (float *)uc_ptr8;
    ul_ptr0 = (unsigned int *)uc_ptr0;
    ul_ptr1 = (unsigned int *)uc_ptr4;
    us_ptr0 = (unsigned short *)uc_ptr0;
    us_ptr1 = (unsigned short *)uc_ptr2;
    us_ptr2 = (unsigned short *)uc_ptr4;
    us_ptr5 = (unsigned short *)uc_ptr10;
    s_ptr0 = (short *)us_ptr0;
    s_ptr1 = (short *)us_ptr1;
    clk_value = uc_ptr1;
    meas_addr = uc_ptr4;
    slvalue = (int *)uc_ptr4;
    svalue = us_ptr1;
    active_cmd = *curr_cmd;
    curr_op_mode = &brd_ptr->cd[act_chnl];
    if (active_cmd != 0)
      if (prompt(cont_meas) == ’y’) {
        meas_cmd = active_cmd;
        cmd_index = cmd_index_tbl[active_cmd];
        if (cmd_index == FALSE) {
          printf("\r\nCan’t continue this channel.\r\n");
          res_flag = FALSE;
          goto sel_chn;    }
        res_flag = TRUE;
        opn_flag = chnl_active[act_chnl];
        data_typ = opn_data_types[cmd_index];
        mstatus = chnl_status_ptr[act_chnl];
        meas_st = stat_sel[cmd_index];
        meas_addr = chnl_meas_ptr[act_chnl];
        data_dir = INPUT;
        op_type = INPUT;
        if (opn_flag & CONTINUOUS)goto cloop;
        else goto resume_m;  /* discrete channel operations */
      }
sel_opn:
    op_type = prompti(opn_type);   /* select operation type */
    if (op_type == EXIT)return;
    if (op_type == RESTART)goto sel_chn;
129



A VMIVME-2540 Intelligent Counter/Controller
    if (op_type == 2) {
       *command = (unsigned short )DISABLE_CH;
       wait_for_resp();
       goto sel_chn;
    }
    if (op_type == 0)   {
      data_dir = INPUT;
      cmd_index = prompti(meas_type);
    }
    else
      if (op_type == 1) {
        data_dir = OUTPUT;
        opn_flag = DISCRETE;
        cmd_index = prompti(output_type);
        cmd_index = cmd_index + NUM_INPUTS;
      }
    else {
      fast_print(invalid_sel);
      goto sel_opn;
    }
    div_flag = freq_div_flg[cmd_index];
    if (cmd_index == EXIT)return;

/* Continue to process menu selection */
    data_typ = opn_data_types[cmd_index];
    meas_cmd = cmd_sel[cmd_index];
    meas_st = stat_sel[cmd_index];
    mstatus = uc_ptr8;
    if (meas_cmd == MEAS_QUAD_POS_FLT)   {
      pos_ang_lim = promptf(pang_lim_sel);
      neg_ang_lim = promptf(nang_lim_sel);
      ang_scale = promptf(scale_sel);
      meas_addr = uc_ptr0;
    }
    if (meas_cmd == EVENT_DELAY_TRIG)    {
      clk_edge = prompti(sel_clock_edge);
      tdelay = promptf(sel_delay_time);
      sflag = prompt(spres_flag);
      if (sflag == ’y’)
        sflag = 0xFF;
      else sflag = 0;
      if (prompt(restart_opt) == ’y’) restart = TRUE;
      else restart = FALSE;
    }
    if (clock_flg[cmd_index]) {
re_clk:
      clock_sel = (unsigned char)prompti(sel_clock);
      if ((clock_sel < 0) || (clock_sel > 5)) {
        fast_print(invalid_sel);
        goto re_clk;            }
130



Programming Example A
    }
    if (prescl_flg[cmd_index] == (char )PRE_SCALE)
      pscale_clk = prompti(prescale);
    else pscale_clk = 0;
    if (gate_flg[cmd_index])    {
      act_pulse = prompti(sel_pulse); /* prompt for act. low/high */
      if (act_pulse != 4) {
        if (meas_cmd < READ_CURR_EVT_CNT) meas_cmd += 1; }
      else
        act_pulse = 0;
    }
    if (lim_flg[cmd_index])   {
re_lim: limit = prompti(sel_limit);
      if (meas_cmd < EVENT_32)
        if (limit > 65535) {
          fast_print(inv_lvl);
          goto re_lim;  }
    }
    if (cmd_index < 2)  {
re_m_mode:
      m_mode = (unsigned char )prompti(mode_prm);
      if (m_mode > 2)   {
        fast_print(invalid_sel);
        goto re_m_mode; }
      if (m_mode != 0) sampl_flg[cmd_index] = TFLAG;
      else sampl_flg[cmd_index] = NULL;
    }
    if (sampl_flg[cmd_index])
      in_samp = prompti(sampl_prm);
    if (flt_per_flg[cmd_index])
      freq_sel = promptf(sel_period);
    if (flt_frq_flg[cmd_index])
      freq_sel = promptf(sel_freq);
    if (flt_pw_flg[cmd_index])
      puls_sel = promptf(sel_puls_width);
    if (duty_cyc_flg[cmd_index])
      puls_sel = promptf(sel_duty_cycle);
    if (clock_sel_flg[cmd_index])  {
      clk_low = prompti(sel_low_clocks);
      clk_high = prompti(sel_high_clocks);
      clk_dur = prompti(sel_total_dur);
    }
    if (div_flag)  {
re_div: f_divisor = prompti(div_prm);
      if (f_divisor < 2) goto div_err;
      else
        if (f_divisor > 65535)
          if (div_flag == INT_16) {
div_err:       fast_print(inv_lvl);
            goto re_div;     }
131



A VMIVME-2540 Intelligent Counter/Controller
    }
    if (meas_cmd == PGM_IO)  {
re_lvl: out_level = (unsigned char )prompti(sel_level);
      if ((out_level < 0) || (out_level > 1)) {
        fast_print(invalid_sel);
        goto re_lvl;            }
    }
    else
      if (meas_cmd == MEAS_PER16)
        mstatus = uc_ptr2;
    else
      if (meas_cmd == QUAD_POS_CTL)  {
qloop:
        qpc_delta = (short )prompti(qpc_delta_sel);
        if (*curr_cmd == QUAD_POS_CTL)
          if (prompt(continue_msg) == ’y’) {
            quad_con = TRUE;
            goto del_only;
          }
        quad_con = FALSE;
        qpc_puls_cnt = (unsigned short )prompti(qpc_pw_sel);
        qpc_position = (int )prompti(qpc_pos_sel);
del_only:
        printf("\r\ndelta angle = %d", qpc_delta);
        wait_out = prompt(wait_outmsg);
        mstatus = uc_ptr10;
      }

resume_m:
    if (cont_flg[cmd_index])    {
      op_mode = prompti(opn_prm);  /* prompt for discrete/continuous */
      if (op_mode == 0) opn_flag = DISCRETE;
      else if (op_mode == 1)opn_flag = CONTINUOUS;
        else if (op_mode == 2)opn_flag = SET_UP;
          else opn_flag = CONTINUOUS | SET_UP;
    }
    if (data_dir == INPUT) {
      poll_flag = (unsigned char)prompti(status_poll);
      dis_flag = prompt(display_meas);
      if (dis_flag != ’y’)dis_flag = NULL;
    }
    poll_flag &= 0x03;
    if (poll_flag == 0x03)poll_flag++;
    if (opn_flag & CONTINUOUS) opn_flag |= poll_flag;
    chnl_active[act_chnl] = opn_flag;

/* Set pointers to diagnostic buffer and board and
  clear the diagnostics buffer */
    diagnostics = (unsigned short *)&brd_ptr->diag_bufr[0];
    for (i = 0; i < 12; i++) *diagnostics++ = 0;
132



Programming Example A
    ntime = MAXACC;
    *command = RESET_STATUS;
    if (wait_for_resp()) goto sel_chn;
    in_char = NULL;
mloop:
    if (res_flag)  {
      res_flag = FALSE;
      goto send_cmd;
    }
    if (meas_cmd < FREQ_DIV_16) {
      *cvalue = act_pulse;
      if (meas_cmd < EVENT_32) {
        meas_addr = (unsigned char *)uc_ptr2;
        *us_ptr0 = (unsigned short)limit;

      }
      else
        if (meas_cmd < READ_CURR_EVT_CNT)  {
          if (clock_sel == 4) clock_sel = 0;
          *ul_ptr0 = limit;
        }
        else  { /* Read current event count */
          read_opn = TRUE;
          chnl_cmd = *curr_cmd;
          if (chnl_cmd < EVENT_32)
            data_typ = INT_16;
          else
            data_typ = INT_32;
          goto send_cmd; /* command is a read event count */
        }
    }
    else
      if (meas_cmd < FREQ_DIV_32)
        *us_ptr0 = (unsigned short )f_divisor;
    else
      if (meas_cmd < SQ_WAVE)
        *ul_ptr0 = f_divisor;
    else
      if ((meas_cmd < MEAS_FLT_PER)) {
        *flt_ptr0 = freq_sel;
        *flt_ptr1 = puls_sel;
      }
    else
      if (meas_cmd < MEAS_QUAD_POS_FLT)      {
        *cvalue = (unsigned char )clock_sel;
        *us_ptr5 = (unsigned short )pscale_clk;
        *us_ptr0 = (unsigned short )in_samp;
      }
    else
      if (meas_cmd < MEAS_QUAD_POS_INT) {
133



A VMIVME-2540 Intelligent Counter/Controller
        mstatus = cvalue;
        if (meas_cmd == READ_QUAD_POS_FLT)   {
          read_opn = TRUE;
          goto send_cmd;           }
        else              {
          *flt_ptr0 = ang_scale;
          *flt_ptr1 = pos_ang_lim;
          *flt_ptr2 = neg_ang_lim;
        }
      }
    else
      if (meas_cmd < TIMER_INTERRUPT_SNG) {
        mstatus = cvalue;
        meas_addr = uc_ptr0;
        if (meas_cmd == READ_QUAD_POS_INT) read_opn = TRUE;
      }
    else
      if (meas_cmd < PULS_SEQ) {
        *cvalue = (unsigned char )clock_sel;
        meas_addr = uc_ptr0;
      }
    else
      if (meas_cmd < PGM_IO)   {
        *cvalue = (unsigned char)clock_sel;
        *us_ptr0 = clk_low;
        *us_ptr1 = clk_high;
        *us_ptr2 = clk_dur;
      }
    else
      if (meas_cmd < QUAD_POS_CTL)
        *cvalue = out_level;
    else
      if (meas_cmd < GROUP_ACQ) {
        *cvalue = (unsigned char)clock_sel;
        *s_ptr1 = qpc_delta;
        if (quad_con) goto send_cmd;
        else  {
          *ul_ptr1 = qpc_position;
          *us_ptr0 = qpc_puls_cnt;
        }
      }
    else
      if (meas_cmd < EVENT_DELAY_TRIG)  {
        mstatus = cvalue;
        slvalue = (int *)ul_ptr0;
        slvalue1 = (int *)((int )slvalue + (2 * ccb_length));
        read_opn = TRUE;
      }
    else
      if (meas_cmd < MEAS_PULS_WIDTH_INT) {
134



Programming Example A
        *cvalue = clk_edge;
        *flt_ptr0 = tdelay;
        *uc_ptr4 = restart;
        *uc_ptr5 = sflag;
      }
    else
      if (meas_cmd > MEAS_PULS_WIDTH_INT)  {
        *cvalue = act_pulse; /* set the active pulse level */
        *uc_ptr0 = m_mode;   /* set msnmnt mode */
        *clk_value = clock_sel; /* select the active clock */
        *us_ptr1 = (unsigned short )in_samp; /* set sample size */
      }
    else
      *cvalue = 0;
send_cmd:
    chnl_meas_ptr[act_chnl] = meas_addr;
    chnl_status_ptr[act_chnl] = mstatus;
    if (opn_flag & CONTINUOUS)
      *con_disc = 0xff;
    else
      *con_disc = 0;
    *valid_flg = 0;
    *mstatus = 0;       /* clear status */
    *command = meas_cmd;
    if (wait_for_resp())goto sel_chn;
    if (data_dir == OUTPUT) {
      if (meas_cmd != QUAD_POS_CTL)
        goto sel_chn;
      else
        if (wait_out == ’n’)goto sel_chn;
    }
cloop:
    if (op_type == 0)
      if (opn_flag & SET_UP) {
        printf("\r\nInput setup complete\r\n");
        chnl_active[act_chnl] = opn_flag ^ SET_UP;
        goto sel_chn;
      }
    if (opn_flag & 0x01);
    else
      if (opn_flag & 0x02)  {
        mstatus = valid_flg;
        meas_st = 0xff;
      }
      else
        if (opn_flag & 0x04) {
          mstatus = (unsigned char *)&brd_ptr->mflag;
          meas_st = 0xff;
        }
    if (meas_st == NULL) goto begin;
135



A VMIVME-2540 Intelligent Counter/Controller
    else {
      if (opn_flag & CONTINUOUS)
        while (!kbhit())   {
          cmd_status = wait_for_meas();
          if (cmd_status) break;
          if (read_opn) *command = meas_cmd;
        }
      else wait_for_meas();
      brd_ptr->channel = act_chnl;

/* Channel disable - send selected command */
      in_char = prompt(operation_sel);
      if (in_char == ’x’)return;
      else
        if (in_char == ’c’)
          if (*curr_cmd == QUAD_POS_CTL)goto qloop;
          else if (data_dir == INPUT)goto cloop;
          else goto sel_chn;
      else
        if (in_char == ’a’) goto sel_chn;
      *command = (unsigned short )DISABLE_CH;
      if (wait_for_resp())goto sel_chn;
      if (in_char == ’r’)goto begin;
      if (read_opn)goto sel_chn;
      else goto mloop;
    }
}

/* Define the function which waits for a command status and processes
  the status received from the polling routine. */
char
wait_for_resp(void)
{
    short cmd_wait, i, j;
    char rtn_code, cmd_out;

    cmd_wait = 0;
    rtn_code = 0;
    cmd_out = *command;
    while (rtn_code == 0)          {
      rtn_code = poll_resp_code();
      if (cmd_out == RESET_STATUS)
        if (rtn_code == 0) return(FALSE);
        else rtn_code = 0;
      cmd_wait++;
      if (cmd_wait > MAX_CMD_RESP) {
        printf("\r\n***No response for command***\r\n");
        return(TRUE);
      }
    }
136



Programming Example A
    if (*diagnostics != 0)   {
      printf("\r\nCommand fatal error - diagnostic buffer:\r\n");
      for (i = 0; i < 7; i++)   {
        for (j = 0; j < 6; j++)
           printf("0x%04x ",*diagnostics++);
        printf("\r\n");
      }
    }
    if (read_opn)
      if (rtn_code == meas_st) return (FALSE);
    if (rtn_code != ACK)  {
      printf("\r\nCommand error code = %02x: %s\r\n", rtn_code,
          diag_msg[rtn_code]);
      return (fatal_flg[rtn_code]);
    }
    if (cmd_out == DISABLE_CH)
      printf("\r\nChannel disable acknowledged\r\n");
    else
      if (data_dir == OUTPUT)
        printf("\r\nOutput setup complete\r\n");
    return (FALSE);
}
void
wait_for_valid()
{
    int vdelay;

    vdelay = MAX_CMD_RESP;
    while (~*valid_flg)  {
      access_delay();
      vdelay--;
      if (vdelay <= 0)  {
        printf("\r\nData Valid Flag Timeout\r\n");
        return;     }
    }
    *valid_flg = 0;
    if (dis_flag)print_meas();
    return;
}

/* Define a function to access the CCB status waiting for a measurement and
  using a short delay between accesses (50 usec 68030 @ 25 MHz)*/
char
wait_for_meas()
{
    unsigned int mdelay;
    unsigned char astatus;
    char meas_rtn, *diag_str;

    mdelay = MAX_MWAIT;
137



A VMIVME-2540 Intelligent Counter/Controller
    if (astatus == 0xff)
      printf("\r\nWaiting for qpc angle delta completion\n");
    meas_rtn = FALSE;
    while (mdelay)                 {
      mdelay--;
      if (mdelay <= 0)break;
      access_delay();
      astatus = *mstatus;
      if (astatus != 0)            {
        *mstatus = 0;
        if (astatus == meas_st)     {
          *valid_flg = 0;
          if (dis_flag) print_meas();
        }
        else {
          if (meas_st == 0xff) diag_str = timer_str;
          else if (astatus > 22)diag_str = unk_str;
             else diag_str = diag_msg[astatus];
          if (meas_cmd == MEAS_QUAD_POS_FLT)
            diag_str = quad_diag[astatus];
          printf("\r\nError status: %02x - %s", astatus,
              diag_str);
        }
        break;
      }
    }
    if (meas_st == 0xff) meas_rtn = FALSE;
    else meas_rtn = fatal_flg[astatus];
    if (mdelay <= 0)    {
      printf("\r\nNo response from measurement command\r\n");
      meas_rtn = TRUE;  }
    return(meas_rtn);
}

/* Define a function which waits for a non_zero command status with a short
  spin delay between access (~50 usec for the program development environ.) */
char
poll_resp_code(void)
{
    unsigned char p_resp;
    unsigned char *r_resp;
    int acc_att;

    r_resp = &brd_ptr->response;
    p_resp = *r_resp;
    acc_att = 0;
    while (acc_att < MAX_CMD_RESP) {
      acc_att++;
      ncounts = MIN_DELAY;
      while (--ncounts);
138



Programming Example A
      if (*r_resp != p_resp)
        p_resp = *r_resp;
      else
        return (char )p_resp;  }
    exit();
}

/* Define a spin loop access delay function */
void
access_delay(void)
{
    ncounts = MIN_DELAY;
    while (--ncounts);
}

/* define a function to print any measurement base on its data type;
  unsigned short, unsigned long, long, and float. */
void
print_meas(void)
{
    printf("\r\nmeasurement = ");
    if (data_typ == INT_16) printf("%d", *(unsigned short *)meas_addr);
    else if (data_typ == INT_32) printf("%lu", *(int *)meas_addr);
    else if (data_typ == SINT_32) printf("%ld", *(unsigned int *)meas_addr);
    else if (data_typ == FLT_32) printf("%f", *(float *)meas_addr);
    else printf("%ld ang1  %ld ang2", *slvalue, *slvalue1);
    *valid_flg = 0;
}

char scr_buf[80];
int str_rtn, prt_rtn;

/* Define a function to prompt for an long integer value */
int
prompti(char *prm_str)
{
    unsigned int i_value;
    char exit_chr;

re_prmi:
    fast_print(prm_str);
    gets(scr_buf);
    exit_chr = scr_buf[0] | 0x20;

/* Test for the "x" and "r" characters to support exit and restart returns */
    if (exit_chr == ’x’) return (EXIT);
    if (exit_chr == ’r’) return (RESTART);
    prt_rtn = sscanf(scr_buf, "%ld", &i_value);
    if (prt_rtn != 1)
      goto re_prmi;
139



A VMIVME-2540 Intelligent Counter/Controller
    return(i_value);
}

/* Define a function to prompt for a floating pt. input value */
float
promptf(char *prm_str)
{
    float f_value;

re_prmf:
    fast_print(prm_str);
    gets(scr_buf);
    prt_rtn = sscanf(scr_buf, "%f", &f_value);
    if (prt_rtn == -1)
      goto re_prmf;
    return(f_value);
}

140


	Disclaimer: Notice About Equivalent Parts
	Reference Material List
	Physical Description and Specifications
	Safety Summary
	Ground the System
	Do Not Operate in an Explosive Atmosphere
	Keep Away from Live Circuits
	Do Not Service or Adjust Alone
	Do Not Substitute Parts or Modify System
	Dangerous Procedure Warnings
	Safety Symbols Used in This Manual
	Theory of Operation

	Functional Description
	System Timing Controller Front-End Logic
	RS-422 Line Driver and Receiver
	Synchronizer and Conditioning Logic
	AM9513A System Timing Controller
	QPM Direction Change Interrupt Logic
	I/O Processor
	68HC000 CPU
	Decode and Control Logic
	Local Bus Arbitration
	Local Address Decode
	Local I/O Functions
	Local Memory
	EPROM Firmware
	Static RAM
	Local Interrupt Controller
	STC Interrupts
	VMEbus Command Interrupt
	VMEbus Slave Interface
	VMEbus Slave Address Decode
	Command Status Code
	VMEbus Interrupter Modules
	Configuration and Installation

	Unpacking Procedures
	Configuration
	DIP Switch Settings
	Jumper Options
	I/O Connector Pin Assignments
	Recommended Discrete Wire Connectors and Terminal Blocks
	TTL/Single-Ended Input Signal Compatibility Configuration
	Programming

	VMEbus Interface Memory Map
	Board ID/Configuration Buffer
	Firmware Revision Level
	Command Code
	Command Status Code
	Command Status Interrupt Request Level
	Command Status Interrupt Vector
	Channel ID
	Continuous/Discrete Flag
	Measurement Ready Flag
	Measurement Channel ID
	Channel Measurement Status
	Channel Control Block Registers
	Timer Channel Control Block
	VMIVME-2540 Continuous/Discrete Flag Buffer
	VMIVME-2540 Measurement Data Valid Flags Buffer
	VMIVME-2540 Firmware Release Information
	VMIVME-2540 Daignostic Buffer
	Command Interface
	Programming Using the Command Interface
	Command Status Codes
	Modes of Operation
	Input Modes of Operation
	Output Modes of Operation
	Timing Modes of Operation
	Channel Control Blocks Common Parameters
	Operation Mode Selection Flag
	Format of the Operation Mode Select Flag:
	Operational Mode Select Flag
	Command Descriptions
	Initialization and Synchronization Command Codes
	Channel Input/Measurement Command Codes
	Integer 16-bit Event Counting
	Integer 32-bit Event Counting
	Period Measurement
	Frequency Measurement
	Pulse-Width Measurement
	Quadrature Position Measurement
	Integer Quadrature Position Measurement
	16-bit Integer Period Measurement
	32-bit Integer Period Measurement
	32-bit Integer Pulse-Width Measurement
	Group Acquisition Mode (Integer QPM)
	16-bit Integer Pulse Measurement
	Delayed Event Timer with VMEbus Interrupt
	Programming Strategies for Input Operations
	Continuous Data Acquisition Mode
	Discrete Data Acquisition Mode
	Channel Output/Waveform Generation Command Codes
	16-bit Frequency Divider
	32-bit Frequency Divider
	Period/Pulse-Width Generation
	Frequency/Duty Cycle Generation
	Pulse Sequence Generation
	Programmed Output Mode
	Quadrature Position Control
	Programming Strategies for Output Operations
	Timer Operation Command Codes
	Timer/Periodic Interrupt
	Auxiliary Commands
	Getting Started
	Terminal Output of Program gs.c
	Programming Example

