

VMIVME-6016

16-CHANNEL INTELLIGENT
ASYNCHRONOUS SERIAL CONTROLLER

(IASC)

PRODUCT MANUAL

DOCUMENT NO. 500-006016-000 D

Revised May 7, 1997

VME MICROSYSTEMS INTERNATIONAL CORPORATION
12090 SOUTH MEMORIAL PARKWAY

HUNTSVILLE, AL 35803-3308
(205) 880-0444 FAX: (205) 882-0859

(800) 322-3616

COPYRIGHT AND TRADEMARKS

© Copyright January 1996. The information in this document has been carefully checked and is believed
to be entirely reliable. While all reasonable efforts to ensure accuracy have been taken in the preparation of
this manual, VMIC assumes no responsibility resulting from omissions or errors in this manual, or from the
use of information contained herein.

VMIC reserves the right to make any changes, without notice, to this or any of VMIC’s products to
improve reliability, performance, function, or design.

VMIC does not assume any liability arising out of the application or use of any product or circuit
described herein; nor does VMIC convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to VMIC’s Standard Conditions of Sale.

AMXbus‘, BITMODULE‘, COSMODULE‘, DMAbus‘, IOWorks‘, IOWorks Access‘, IOWorks Foundation‘,
IOWorks man figure™, IOWorks Manager™, IOWorks Server™, MAGICWARE‘, MEGAMODULE‘, PLC
ACCELERATOR (ACCELERATION)‘, Quick Link‘, RTnet™, Soft Logic Link‘, SRTbus‘, TESTCAL‘, “The Next
Generation PLC”‘, The PLC Connection‘, TURBOMODULE‘, UCLIO‘, UIOD‘, UPLC‘, Visual IOWorks‘, Visual
Soft Logic Control(ler)™, VMEaccess‘, VMEmanager‘, VMEmonitor‘, VMEnet‘, VMEnet II‘, and VMEprobe‘ are
trademarks of VMIC.

The I/O man figure, UIOC®, and WinUIOC® are registered trademarks of VMIC.

Microsoft, Microsoft Access, MS-DOS, Visual Basic, Visual C++, Win32, Windows, and XENIX are
registered trademarks and Windows NT is a trademark of Microsoft Corporation.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other registered trademarks are the property of their respective owners.

VMIC
All Rights Reserved

This document shall not be duplicated, nor its contents used for any
purpose, unless granted express written permission from VMIC.

®

UIOC

WinUIOC

(I/O man figure) (IOWorks man figure)

RECORD OF REVISIONS

REVISION
LETTER

DATE PAGES INVOLVED CHANGE NUMBER

VMIC
12090 South Memorial Parkway
Huntsville, AL 35803-3308 • (205) 880-0444

REV LTR PAGE NO.

ii

A 02/07/96 Release 96-0125

B 02/19/97 Cover, pages ii, 1-1, 1-2, 3-2, 3-3, 97-0205

and 5-5

C 05/12/97 Cover, Pages ii and 5-4 97-0405

DOC. NO. 500-003419-000 C

SAFETY SUMMARY

THE FOLLOWING GENERAL SAFETY PRECAUTIONS MUST BE OBSERVED DURING ALL PHASES
OF THE OPERATION, SERVICE, AND REPAIR OF THIS PRODUCT. FAILURE TO COMPLY WITH
THESE PRECAUTIONS OR WITH SPECIFIC WARNINGS ELSEWHERE IN THIS MANUAL VIOLATES
SAFETY STANDARDS OF DESIGN, MANUFACTURE, AND INTENDED USE OF THIS PRODUCT. VME
MICROSYSTEMS INTERNATIONAL CORPORATION ASSUMES NO LIABILITY FOR THE
CUSTOMER'S FAILURE TO COMPLY WITH THESE REQUIREMENTS.

GROUND THE SYSTEM
To minimize shock hazard, the chassis and system cabinet must be connected to an
electrical ground. A three-conductor AC power cable should be used. The power cable
must either be plugged into an approved three-contact electrical outlet or used with a
three-contact to two-contact adapter with the grounding wire (green) firmly connected to
an electrical ground (safety ground) at the power outlet.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE
Do not operate the system in the presence of flammable gases or fumes. Operation of
any electrical system in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS
Operating personnel must not remove product covers. Component replacement and
internal adjustments must be made by qualified maintenance personnel. Do not replace
components with power cable connected. Under certain conditions, dangerous voltages
may exist even with the power cable removed. To avoid injuries, always disconnect
power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE
Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY SYSTEM
Because of the danger of introducing additional hazards, do not install substitute parts or
perform any unauthorized modification to the product. Return the product to VME
Microsystems International Corporation for service and repair to ensure that safety
features are maintained.

DANGEROUS PROCEDURE WARNINGS
Warnings, such as the example below, precede only potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

DANGEROUS VOLTAGES, CAPABLE OF CAUSING DEATH, ARE PRESENT IN THIS SYSTEM. USE
EXTREME CAUTION WHEN HANDLING, TESTING, AND ADJUSTING.

W A R N I N G
iii

SAFETY SYMBOLS

GENERAL DEFINITIONS OF SAFETY SYMBOLS USED IN
OR

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

*

*
*

*

*
*C A U T I O N

NOTE:

W A R N I N G

!

OR
THIS MANUAL

Instruction manual symbol: the product is marked with this symbol when it
is necessary for the user to refer to the instruction manual in order to
protect against damage to the system.

Indicates dangerous voltage (terminals fed from the interior by voltage
exceeding 1000 volts are so marked).

Protective conductor terminal. For protection against electrical shock in
case of a fault. Used with field wiring terminals to indicate the terminal
which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal
common, as well as providing protection against electrical shock in case of
a fault. Before operating the equipment, terminal marked with this symbol
must be connected to ground in the manner described in the installation
(operation) manual.

Frame or chassis terminal. A connection to the frame (chassis) of the
equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

The WARNING sign denotes a hazard. It calls attention to a procedure, a
practice, a condition, or the like, which, if not correctly performed or
adhered to, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an operating
procedure, a practice, a condition, or the like, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or
all of the system.

The NOTE sign denotes important information. It calls attention to a
procedure, a practice, a condition or the like, which is essential to highlight.
iv

500-006016-000
v

VMIVME-6016
16-CHANNEL INTELLIGENT

ASYNCHRONOUS SERIAL CONTROLLER (IASC)

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION

1.1 INTRODUCTION... 1-1
1.2 FEATURES.. 1-1
1.3 REFERENCE MATERIAL LIST ... 1-2

SECTION 2. PHYSICAL DESCRIPTION AND SPECIFICATIONS

SECTION 3. THEORY OF OPERATION

3.1 OPERATIONAL OVERVIEW ... 3-1
3.2 RS-232 CONNECTIONS... 3-1
3.3 CONTROL BLOCKS AND REGISTERS... 3-2
3.4 VMEbus INTERFACE.. 3-2
3.5 LOCAL BUS .. 3-3
3.5.1 CPU... 3-4
3.5.2 ROM.. 3-4
3.5.3 RAM .. 3-4
3.5.4 UARTs ... 3-5
3.5.5 Jumpers... 3-5
3.5.6 Glue Logic ... 3-6
3.6 VMEbus TIMER... 3-6

SECTION 4. PROGRAMMING

4.1 OVERVIEW ... 4-1
4.2 GLOBAL REGISTER MAP.. 4-2
4.2.1 Board ID Register (BRD_ID) ... 4-3
4.2.2 POR Self-Test Status Flag Register (STFLAG)............................... 4-3
4.2.3 ROM Version Register (ROM_VER).. 4-3
4.2.4 Command Register 0 (CR0).. 4-4
4.2.5 Command Register 1 (CR1).. 4-6

500-006016-000
vi

4.2.6 GO Bits Register (GO) .. 4-7
4.2.7 Transmit Request Bits Register (TX) .. 4-8
4.2.8 Receive Accept Bits Register (RX).. 4-8
4.2.9 Send Break Bits Register (BREAK)... 4-9
4.2.10 Control Register 2 (CR2)... 4-9
4.2.11 Master Size and Address Modifier Register (SZ_AM)................... 4-10

TABLE OF CONTENTS (Continued)

SECTION 4. PROGRAMMING (Concluded)
Page

4.2.12 Self-Test Procedure Register (ST_PROC) 4-12
4.2.13 Error Interrupt Control Register (ER_MSK)................................... 4-12
4.2.14 Error Interrupt Vector Register (ER_VEC)..................................... 4-13
4.2.15 Buffer Base Register (BUFBASE) ... 4-13
4.2.16 Global Status Register (GST)... 4-14
4.2.17 Master Granularity (MAS_GRN).. 4-16
4.3 CHANNEL CONTROL BLOCKS ... 4-17
4.3.1 Channel Status Register (CST)... 4-18
4.3.2 Channel Interrupt Mask Register (CH_MSK) 4-20
4.3.3 Channel Interrupt Vector Register (CH_VEC) 4-21
4.3.4 End-of-Block Code Register (EOB)... 4-21
4.3.5 Flow Control XOFF Code Register (XOFF)................................... 4-22
4.3.6 Flow Control XON Code Register (XON) 4-22
4.3.7 BREAK Duration Register (BRK_DUR)... 4-22
4.3.8 Internal Ring Size Register (SZ_RING)... 4-23
4.3.9 Internal Ring Low Water Mark Register (LO_RING) 4-23
4.3.10 Internal Ring High Water Mark Register (HI_RING)...................... 4-24
4.3.11 Channel Control Byte 1 Register (CH_CON1) 4-24
4.3.12 Channel Control Byte 2 Register (CH_CON2) 4-26
4.3.13 User Buffer Size Register (SZ_UBUF) .. 4-28
4.4 GENERAL PROGRAMMING DETAILS... 4-29
4.4.1 Introduction.. 4-29
4.4.2 Channel Shutdown .. 4-29
4.4.3 Global Setup for Board Operation ... 4-29
4.4.4 Channel Setup... 4-30
4.4.5 Channel Startup .. 4-31
4.4.6 Channel Operation .. 4-31
4.4.7 Restarting After an Error Interrupt... 4-32

500-006016-000
vii

4.4.8 Performance Considerations ... 4-32
4.4.9 Usage Notes on VMIVME-6016 Registers 4-32
4.5 GENERAL PROGRAMMING EXAMPLES.................................... 4-37
4.6 RUNNING SELF-TESTS FROM THE HOST 4-40
4.7 SAMPLE HEADER FILE ... 4-41
4.7.1 Sample Header File for Indivisible RMWs..................................... 4-45
4.7.2 Assembler Source File for 680x0 RMW Instructions 4-46

SECTION 5. CONFIGURATION AND INSTALLATION

5.1 UNPACKING PROCEDURES ... 5-1
5.2 PHYSICAL INSTALLATION... 5-1

TABLE OF CONTENTS (Continued)

SECTION 5. CONFIGURATION AND INSTALLATION (Concluded)
Page

5.3 JUMPER CONFIGURATIONS .. 5-2
5.3.1 VMEbus Address Configuration .. 5-2
5.3.2 System Controller Configuration ... 5-3
5.3.3 Hardware Reset .. 5-3
5.3.4 Fixed Jumpers ... 5-3

SECTION 6. MAINTENANCE

6.1 MAINTENANCE .. 6-1
6.2 MAINTENANCE PRINTS.. 6-1

LIST OF FIGURES

FigurePage
3.2-1 RJ12 Socket .. 3-2
3.5.3-1 Ring and Linear Buffer Diagrams .. 3-5
4.3.13-1 Buffers ... 4-28
5.3.1-1 Base Address and Access Mode Selection..................................... 5-2
5.3-1 VMIVME-6016 Jumper Field Locations... 5-4
5.3-2 VMIVME-6016 Front Panel.. 5-5
5.3-3 RJ12 Socket .. 5-5

500-006016-000
viii

LIST OF TABLES

TablePage
3.2-1 RJ12 Socket Pinout... 3-2
3.5-1 Local Bus Map... 3-3
3.5.3-1 RAM Map .. 3-4
4.1-1 VMIVME-6016 Register Map... 4-1
4.2-1 VMIVME-6016 Global Register Map ... 4-2
4.2.1-1 Board ID Register Bit Map... 4-3
4.2.2-1 POR Self-Test Status Flag Register Bit Map................................... 4-3
4.2.3-1 ROM Version Register Bit Map ... 4-3
4.2.4-1 Command Register 0 Bit Map ... 4-4
4.2.5-1 Command Register 1 Bit Map ... 4-6
4.2.6-1 GO Bits Register Bit Map .. 4-7
4.2.7-1 Transmit Request Bits Register Bit Map.. 4-8
4.2.8-1 Receive Accept Bits Register Bit Map... 4-8

TABLE OF CONTENTS (Concluded)

LIST OF TABLES (Concluded)

TablePage
4.2.9-1 Send Break Bits Register Bit Map... 4-9
4.2.10-1 Control Register 2 Bit Map .. 4-9
4.2.11-1 Master Size and Address Modifier Register Bit Map..................... 4-10
4.2.12-1 Self-Test Procedure Register Bit Map ... 4-12
4.2.13-1 Error Interrupt Control Register Bit Map.. 4-12
4.2.14-1 Error Interrupt Vector Register Bit Map ... 4-13
4.2.16-1 Global Status Register Bit Map ... 4-14
4.2.17-1 Master Granularity Register Bit Map ... 4-16
4.3-1 VMIVME-6016 Channel Control Block Map 4-17
4.3.1-1 Channel Status Register Bit Map .. 4-18
4.3.2-1 Channel Interrupt Mask Register Bit Map 4-20
4.3.3-1 Channel Interrupt Vector Register Bit Map.................................... 4-21
4.3.4-1 End-of-Block Code Register Bit Map... 4-21
4.3.5-1 Flow Control XOFF Code Register.. 4-22
4.3.6-1 Flow Control XON Code Register Bit Map 4-22
4.3.7-1 BREAK Duration Register Bit Map.. 4-22

500-006016-000
ix

4.3.8-1 Internal Ring Size Register Bit Map .. 4-23
4.3.9-1 Internal Ring Low Water Mark Register Bit Map 4-23
4.3.10-1 Internal Ring High Water Mark Register Bit Map 4-24
4.3.11-1 Channel Control Byte 1 Register Bit Map...................................... 4-24
4.3.12-1 Channel Control Byte 2 Register Bit Map...................................... 4-26
4.3.13-1 User Buffer Size Register Bit Map... 4-28
4.4.1-1 VMIVME-6016 Register and Field Symbols 4-34
4.6-1 CST[0] Register Self-Test Failure Codes....................................... 4-41
4.6-2 Test Bits in STPROC Register... 4-41
5.3-1 RJ12 Socket Pinout... 5-5

APPENDIX

A Assembly Drawing, Parts List, and Schematic

500-006016-000
SECTION 1

INTRODUCTION

1.1 INTRODUCTION

The VMIVME-6016 is a single-slot serial port controller with 16 or
32 channels, on-board ring buffers for each channel in both directions, and an
on-board 25 MHz no-wait-state 68020 processor. The processor handles all character
I/O and buffering, with Channel Control Blocks (CCBs) in on-board memory. User
buffers, either linear or ring, reside either on-board or in VMEbus global memory. The
VMEbus interface is controlled by a VIC068 or optional VIC64 VMEbus Interface
Controller.

1.2 FEATURES

a. 8 or 16 channels available in one VMEbus slot

b. Line parameters independently controlled for each channel by control
block in memory:

• baud rate
• internal ring buffer size
• user buffer size and address
• user buffer type (linear or ring)
• flow control: XON/XOFF, Any/XOFF, User characters, RTS/CTS,

None
• interrupt on EOB or user-defined character
• interrupt on receive time-out
• interrupt on flow control
• interrupt on transmit complete
• BREAK send/receive and duration
• interrupt vector and level

c. RJ12 front panel connectors

d. Signal levels RS-232 compatible

e. Channel signals: TXD, RXD, RTS, CTS, DCD, GND

f. Short I/O-accessed control blocks

g. Standard/extended/DMA-accessed user buffers

h. Programmable VMEbus address modifiers

i. Size-programmable on-board ring buffers
1-1

500-006016-000
j. 128 Kbytes, 256 Kbytes, 512 Kbytes, or 1024 Kbytes total user buffer
space

k. 68020 processor, 25 MHz or 32 MHz, no-wait-states

l. Baud rates: 50 through 38,400 bps, each channel independent

m. Programmable interrupt vector and level

n. VMEbus compatible

o. MA32:MBLT32 as Master, optional MBLT64 with VIC64

p. SADO32:SD32 as Slave, optional MBLT with VIC64

q. Front panel status indicator

r. Programmable slave address for extended/standard buffer locations

s. Jumper-selectable slave address for short I/O

t. Bus release: ROR, RWD, FAIR, RCLR

u. Jumper-enabled system controller functions

1.3 REFERENCE MATERIAL LIST

Refer to "The VMEbus Specification" for a detailed explanation of the
priority interrupt bus. "The VMEbus Specification" is available from the following
source:

VITA
VFEA International Trade Association

10229 N. Scottsdale Road
Scottsdale, AZ 85253

(602) 951-8866

The following application and configuration guides are available from VMIC
to assist the user in the selection, specification, and implementation of systems based
on VMIC's products:

TITLE DOCUMENT NO.

Digital Input Board Application Guide 825-000000-000
Change-of-State Application Guide 825-000000-002
Digital I/O (with Built-in-Test) Production Line Description 825-000000-003
Connector and I/O Cable Application Guide 825-000000-006
1-2

500-006016-000

2-1

SECTION 2

PHYSICAL DESCRIPTION AND SPECIFICATIONS

REFER TO 800-006016-000 SPECIFICATION

500-006016-000
SECTION 3

THEORY OF OPERATION

3.1 OPERATIONAL OVERVIEW

The VMIVME-6016 is a single-slot serial port controller with 16 or
32 channels, on-board ring buffers for each channel in both directions, and an
on-board 25 MHz no-wait-state 68020 processor. The processor handles all character
I/O and buffering, with Channel Control Blocks (CCBs) in on-board memory. User
buffers, either linear or ring, reside either on-board or in VMEbus global memory. The
VMEbus interface is controlled by a VIC068 or VIC64 VMEbus Interface Controller.

The VMIVME-6016 is an SADO32:SD32 VMEbus Slave for setup
purposes. The VMEbus processor must set a number of items within the
VMIVME-6016, such as interrupt vectors and masks. Most importantly, the host
processor must set up a CCB for each of the channels. These blocks specify line
parameters, flow control method, interrupts, on-board transmit and receive ring buffer
size, and off-board user buffer size and method. The CCB allows each of the 16
channels to be independently programmable. When the host processor sets the GO
bit for a channel, the VMIVME-6016 autonomously operates according to parameters
in the corresponding CCB.

The front panel has an RJ12 6-pin telecom jack for each channel. Each
channel supports signal ground and five signals:

• Receive Data

• Transmit Data

• Request to Send

• Clear to Send

• Data Carrier Detect

3.2 RS-232 CONNECTIONS

Each of the 16 channels is a 6-wire subset of the usual RS-232 signals. The
RJ12 connectors are shown on schematic sheet 14. As viewed from the front panel,
the RJ12 appears as in Figure 3.2-1. Each channel has the pinout shown in
Table 3.2-1.
3-1

500-006016-000

The VMIVME-6016 does not need ±12 V from the VMEbus backplane. The
RS-232 levels are converted to and from TTL by the MAX244 chips shown on sheets
11 and 13 of the schematics. Using internal charge pumps, these chips generate their
own ±12 V from the VMEbus +5 V. The charge pumps require the attached 1 µF
capacitors. There are no jumpers or hardware configuration involved with the RS-232
interfaces.

3.3 CONTROL BLOCKS AND REGISTERS

The VMIVME-6016 emulates the register space with the top 256 bytes of
on-board RAM accessed from the VMEbus by SADO16:SD32 (short I/O). Most of this
space is taken up by 16 identically formatted control blocks, one for each of the 16
RS-232 channels. There is also a global register set for overall control and status.

3.4 VMEbus INTERFACE

The VMEbus interface is shown on schematic sheets 2, 5, 6, 7, and the top
of 8. It uses a VIC as the core of the design. The CY7C964 slices save complexity of
layout and logic design and support full master and slave VMEbus functionality
including block-mode slave transfers. These transfers appear to the local bus as a
chain of single cycles, so the CPU will not get locked out. See Section 3.5.1.

As a VMEbus slave, the VMIVME-6016 responds to A16 accesses to
implement control and status registers with some of the on-board memory and to A24
and A32 accesses to implement on-board user buffers for each channel. The VMEbus
slave specification is SADO32:SD32 (A32:A24:A16:ADO:D32:D16:D8(EO)).
Supervisory only or both supervisory and nonprivileged accesses are allowed. Boards
with the VIC64 option are additionally capable of MBLT64 VME64 accesses.

1

2

3

4

5

6

Table 3.2-1. RJ12 Socket Pinout

Signal RJ12 Meaning Direction

CTS 1 Clear to Send Input

GND 2 Signal Ground

RXD 3 Receive Data Input

TXD 4 Transmit Data Output

DCD 5 Data Carrier Detect Input

RTS 6 Request to Send Output

Figure 3.2-1. RJ12 Socket
M6016/F3.2-1

M6016/T3.2-1
3-2

500-006016-000
As a VMEbus master, the VMIVME-6016 can request the bus on any of the
three BR levels, with AM code, BR level, and data width under control of
programmable registers. The master specification is MA32:MBLT32
(A32:A24:A16:D32:D16:D8(EO):BLT)). The VIC64 option adds MBLT64.

As system controller (if installed in VMEbus slot 1), the VMIVME-6016
provides a full-function three-level arbiter, an IACK daisy-chain driver, a
programmable BERR timer, a SYSCLK driver, and a SYSRESET* driver.

See Sections 3.5.3, 3.5.5, 3.6, and Sections 4 and 5 for details.

3.5 LOCAL BUS

A 32-bit data bus supports the ROM, RAM, 68020 CPU, UARTs, control and
status registers for the VMEbus interface, and a buffer for reading the short I/O
configuration jumpers. See Table 3.5-1 for the overall map for the local bus.

The on-board CPU can make VMEbus master accesses by setting a
direction control bit (TOLOCAL in the $280000 space) and then entering user mode,
as opposed to supervisor mode. If the direction is TOLOCAL = 1, for example, a read
accesses VMEbus space no matter what the address, and a write accesses local
RAM. The TOLOCAL register is in the glue logic (see Section 3.5.6). The VMEbus
cycles can be single cycle, bursts, or block transfers, depending on the programmable
registers in the VIC chip.

Table 3.5-1. Local Bus Map

Offset Description

$000000 - 03FFFF RAM

$040000 - 1FFFFF Expansion RAM

$200000 - 27FFFF VIC VMEbus Interface Controller

$280000 - 2FFFFF LED control, jumpers, etc.

$300000 - 37FFFF UARTs

$380000 - 3FFFFF ROM

M6016/T3.5-1
3-3

500-006016-000
3.5.1 CPU

The CPU (see schematic sheet 3) is a 25 or 32 MHz 68020. The CPU
controls all other devices on the local bus and is responsible for transferring all UART
data and status. It runs extensive tests on most of the hardware at power up.
Additional diagnostic routines support production test. At the highest UART bit rate
(38,400 bits/second), there are some throughput restrictions. The CPU has to process
a data byte from a channel about every 15 microseconds if all are active at once in one
direction. Bidirectional 38,400 bits/second on all channels simultaneously is not
possible.

3.5.2 ROM

The VMIVME-6016 firmware resides in a 64 Kbyte ROM (27C512), on the
lower half of schematic sheet 8. On power up or hard reset (by momentarily shorting
J1), the firmware causes the CPU to run a test of the RAM. After this test, the whole
content of the ROM is copied to the private section of RAM, the upper half. At least
64 Kbytes of private RAM are left for stacks and so forth. For the first eight byte-wide
local bus cycles, the ROM is mapped to local bus zero (0). Afterwards, it is mapped at
local $380000 and up allowing the CPU to get its initial program counter and stack
address correctly. Once the CPU completes the power-on tests, it sets up defaults in
the register space and begins waiting for the host to set up control blocks.

3.5.3 RAM

A 256 Kbyte static RAM, U16 on sheet 9, provides all of the space needed
for the A16 space registers, local work area and code, and on-board user buffers. It is
a 35 ns static RAM module, organized 64 Kbytes x 32 bits. See Table 3.5.3-1 for a
map of the RAM.

The RAM can be expanded to 512 Kbytes, 1 MB, or 2 MB, but it would only
provide for larger on-board user and internal buffers. (See Section 4.2.15 for details.)

Table 3.5.3-1. RAM Map

Offset Description

$000000 - 01FFFF On-board user buffers, if used

$020000 - 03FEFF CPU private, and ring buffers

$03FF00 - 03FFFF A16-space registers
M6016/T3.5.3-1
3-4

500-006016-000
When the VMIVME-6016 is used in slave mode (on-board user buffers), the
user buffers (linear or ring) appear in ascending order by channel, starting at the
VMEbus address given in one of the global registers. This space is mapped into the
lower half of the on-board RAM. The CPU's private memory (stacks, interrupt vectors,
primary ring buffers, global variables, and code) begins halfway through the on-board
RAM and ends just below the area taken by the A16 space registers.

Figure 3.5.3-1. Ring and Linear Buffer Diagrams

3.5.4 UARTs

Two Phillips 2698B octal UART chips provide a total of 16 channels (shown
on schematic sheets 10 and 12). Receive Ready signals from each channel can
interrupt the on-board CPU with sixteen unique vectors. There are eight more vectors
for pairs of channels for lower-priority events, such as Transmit Ready, Break,
Overrun, and Parity Error. The TTL level serial signals get converted to and from
RS-232 levels by five Maxim MAX244 self-powered transceiver chips.

3.5.5 Jumpers

The CPU can read the ten jumpers at JP3 on sheet 8 of the schematic by
asserting the JMPRDN signal (see Section 3.5.6). There is no other connection to the
jumpers except through the buffers to the Local Bus. The CPU uses the upper eight
jumper locations to program the CY7C964 connected to VMEbus A[15..8] (sheet 7) to
map VMEbus A16 slave space. The ninth jumper location is used by the CPU to

SZ_UBUF
SZ_UBUF-1

0

2

4

Input Pointer

Output Pointer

Message
in buffer

Unused but
allocated space

SZ_UBUF
SZ_UBUF-1

0

2
count (n)

Unused but
allocated space

n+2

RING BUFFER LINEAR BUFFER
M6016/F3.5.3-1
3-5

500-006016-000
program the VIC chip slave decode control registers for either supervisor only or for
both supervisor and nonprivileged. It is not possible to configure the VMIVME-6016 for
nonprivileged only slave space. This jumper controls only the AM decode for A16
space; the A24 and A32 buffer space is programmable, but also for the same two
choices (no nonprivileged only). The CPU uses the tenth jumper location to control the
System Controller features of the VIC chip.

3.5.6 Glue Logic

The glue logic that provides the local bus memory mapping and the local
bus read/write/select signals is in an 80-macrocell PLD-like FPGA at U9 on sheet 4.
This is an Intel FX780, chosen because of its uniform timing and global routability.

3.6 VMEbus TIMER

The VMIVME-6016 has a hardware timer that counts 3.6864 MHz clock
cycles while either DS0* or DS1* is asserted. Sheet 4, lower left, shows the timer. If
about 50 microseconds elapse while the timer is counting, it asserts BERR* (if BTOEN
is low). The BERR* negates about 300 ns after the DSx negate. Note that the DSx
signals are isolated from the PLD by 220 ohm resistors which help reduce the DSx
tracelengths and loading. See Section 4.2.5 for information on disabling the hardware
timer.

The VIC chip supplies a programmable VMEbus time-out period (BERR*
generator) ONLY if the board is configured for, and is in, VMEbus slot 1.
3-6

500-006016-000
SECTION 4

PROGRAMMING

4.1 OVERVIEW

The VMIVME-6016 has 256 bytes of registers which appear in VMEbus A16
(short I/O) memory space. The Global Registers use the first 32 bytes of this space.
The Channel Control Blocks immediately follow the Global Registers in short I/O
space, channel 0 first (see Table 4.1-1). These registers should generally be accessed
according to the size indicated, but the registers tolerate byte, word, longword, and
unaligned access.

NOTE:

FOR A SHORT TIME AFTER POWER UP, THE VMIVME-6016 WILL NOT DECODE ACCESSES
FROM THE VMEbus. THIS PERIOD IS ALWAYS LESS THAN TWENTY (20) MILLISECONDS.
AFTER THIS TIME, ON-BOARD SELF-TESTS BEGIN TO RUN, DURING WHICH TIME THE
VMIVME-6016 DECODES VMEbus A16 (SHORT I/O) ACCESSES AND SHOWS $FF IN THE POR
SELF-TEST STATUS FLAG REGISTER. WHILE THE POR SELF-TEST STATUS FLAG REGISTER
IS NONZERO, NONE OF THE REGISTERS BEYOND OFFSET $03 ARE VALID, AND VMEbus
ACCESSES TO THE BOARD SHOULD BE KEPT TO A MINIMUM OR THE SELF-TEST WILL SLOW
DOWN. THE SELF-TEST PERIOD IS LESS THAN TWENTY SECONDS (ABOUT FIVE SECONDS
FOR THE NORMAL MEMORY CONFIGURATION, WHICH PROVIDES 128 KBYTES OF USER
BUFFER MEMORY).

M6016/T4.1-1

Table 4.1-1. VMIVME-6016 Register Map

Offset Description

$00 - 1F Global Registers

$20 - 2D Channel Control Block 0

$2E - 3B Channel Control Block 1

$3C - 49 Channel Control Block 2

$4A - 57 Channel Control Block 3

$58 - 65 Channel Control Block 4

$66 - 73 Channel Control Block 5

$74 - 81 Channel Control Block 6

$82 - 8F Channel Control Block 7

$90 - 9D Channel Control Block 8

$9E - AB Channel Control Block 9

$AC - B9 Channel Control Block 10

$BA - C7 Channel Control Block 11

$C8 - D5 Channel Control Block 12

$D6 - E3 Channel Control Block 13

$E4 - F1 Channel Control Block 14

$F2 - FF Channel Control Block 15
4-1

500-006016-000
4.2 GLOBAL REGISTER MAP

The Global Registers control those features of the VMIVME-6016, and
reflect those status conditions, that are independent of specific channels. This
includes, for example, the slave mode base address and address space of the
VMIVME-6016. Table 4.2.1 shows their offsets from the Board ID Register, the short
I/O address of which is determined by a jumper field (see Section 5.3.1).

NOTE:

ANY BIT OR FIELD SHOWN AS ZERO (0) AND/OR RESERVED MUST BE SET TO ZERO (0).

M6016/T4.2-1

Table 4.2-1. VMIVME-6016 Global Register Map

Offset Name Meaning Read/Write

$00 BRD_ID Board ID Read Only

$01 STFLAG Self-Test flag in ID Register Read Only

$02 ROM_VER ROM Version Code Read Only

$04 CR0 Command Register 0 Read/Write

$05 CR1 Command Register 1 Read/Write

$06 GO “GO” bits, ch[15..0] = GO[15..0] Read/Write

$08 TX “TX” bits, ch[15..0] = TX[15..0] Read/Write

$0A RX “RX” bits, ch[15..0] = RX[15..0] Read/Write

$0C BREAK “BREAK”, ch[15..0] = BREAK[15..0] Read/Write

$0E CR2 Command Register 2 Read/Write

$0F Reserved

$10 SZ_AM Master’s Size and AM Read/Write

$11 ST_PROC Self-Test Procedure Register Read/Write

$12 ER_MSK Error Interrupt Control Read/Write

$13 ER_VEC Error Interrupt Vector Read/Write

$14 BUFBASE Base of Buffers (M) or Board (S) Read/Write

$18 GST Global Status Register Read/Write

$1A MAS_GRN Master Granularity Read/Write
4-2

500-006016-000
4.2.1 Board ID Register (BRD_ID)

The Board ID register is a read-only byte register. It always contains the
value $3A, the VMIVME-6016 board identification code.

4.2.2 POR Self-Test Status Flag Register (STFLAG)

The Power-On-Reset (POR) Self-Test Status Flag register is a read-only
byte register. Upon power up or VMEbus system reset, the VMIVME-6016 processor
runs a self-diagnostic and reports the results to the GST register. A value of $FF
indicates the board is still busy with its self-test, while a value of $00 indicates the test
is complete. If the self-test fails, the Self-Test Fail bit in the GST is set. While the value
is $FF, the board should be considered nonfunctional; the only register containing
valid data besides this one is the Board ID register. Once the STFLAG register is clear,
the board functions normally and all other registers are valid.

4.2.3 ROM Version Register (ROM_VER)

The ROM Version register is a read-only word register. The value in the
lower byte of this register represents the revision number of the on-board firmware as
two 4-bit BCD digits. The upper byte represents the hardware options installed.

Table 4.2.1-1. Board ID Register Bit Map

Global Offset $00 BRD_ID (Read Only)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

0 0 1 1 1 0 1 0

Table 4.2.2-1. POR Self-Test Status Flag Register Bit Map

Global Offset $01 STFLAG (Read Only)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

SELF-TEST STATUS

Table 4.2.3-1. ROM Version Register Bit Map

Global Offset $02 ROM_VER (Read Only)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

INCONSIST_OPT 0 OLD_VIC_OPT MBLT_OPT SLOW_CPU_OPT CHAN_OPT MEM_OPT

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

FIRMWARE REVISION

M6016/T4.2.1-1

M6016/T4.2.2-1

M6016/T4.2.3-1
4-3

500-006016-000
Bit 15: Inconsistent Options (INCONSIST_OPT) – When set to one (1), this bit
indicates that the ROM firmware is inconsistent with the hardware
options.

Bit 14: Reserved – This bit is always zero (0).

Bit 13: Old VIC Option (OLD_VIC_OPT) – When set to one (1), this bit
indicates that the VMIC silicon ID is too old.

Bit 12: MBLT Option (MBLT_OPT) – When set to one (1), this bit indicates that
the VIC chip is VIC64 and MBLT is possible. A zero (0) indicates that
the VIC chip is VIC68 and MBLT is not possible.

Bit 11: Slow CPU Option (SLOW_CPU_OPT) – When set to one (1), this bit
indicates that the CPU is running at 25 MHz. A zero (0) indicates a
32 MHz CPU.

Bit 10: Channel Option (CHAN_OPT) – When set to one (1), this bit indicates
that only 8 channels are available for use. A zero (0) indicates that 16
channels are available.

Bits 09-08: Memory Option (MEM_OPT) – These bits indicate the memory
available on the VMIVME-6016 as follows:

4.2.4 Command Register 0 (CR0)

This register controls the major features of the VMIVME-6016. This register
should be accessed according to Section 4.4.9.

Bit 09 Bit 08
User Buffer

Area

0 0 128 Kbytes

0 1 256 Kbytes

1 0 512 Kbytes

1 1 1 Mbyte

Table 4.2.4-1. Command Register 0 Bit Map

Global Offset $04 CR0 (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

MASTER SLV_OK SLV_32 SUPONLY TXBRK SLFTST RST_BRD LEDN

M6016/T4.2.4-1
4-4

500-006016-000
Bit 07: Master Mode (MASTER) – When set to one (1), this bit causes the
VMIVME-6016 to run in master mode, in which the user buffers are
off-board. In master mode, SZ_AM and BUFBASE point to a block of
VMEbus memory that holds all the user buffers. When set to zero (0), the
MASTER bit causes the VMIVME-6016 to run in slave mode, in which the
user buffers are on-board. In this case, BUFBASE is the programmable
VMEbus address of the on-board user buffers. In both cases, the user
buffers are an array of possibly different-sized buffers. Each is allocated a
fixed amount of memory whether or not it is all used: 1/64 of the total
on-board RAM in the slave case and up to 32 Kbytes in the master case.
They start with channel 0 input followed by channel 0 output, and finally
ending with channel 15 output.

Bit 06: Slave Decode OK (SLV_OK) – When set to one (1), this bit allows VMEbus
access to the user buffer memory on the VMIVME-6016. This bit should
ordinarily be set to one (1) if the VMIVME-6016 is in slave mode (on-board
user buffers), and be set to zero (0) otherwise. When this bit transitions from
zero (0) to one (1), the VMIVME-6016 uses the contents of the BUFBASE to
set the base address of the VMEbus space in which the user buffer memory
will appear. After the slave address is set, BUFBASE can be used for other
purposes.

Bit 05: Slave is A32 (SLV_32) – When set to one (1), this bit allows extended (A32)
VMEbus access to the user buffer memory on the VMIVME-6016. When this
bit is set to zero (0), the VMIVME-6016 responds to standard (A24)
accesses, and the most significant eight bits of BUFBASE are ignored.

Bit 04: Slave decodes only Supervisor Address Modifiers (SUPONLY) – When set
to one (1), this bit allows only supervisor accesses to the user buffer memory
on the VMIVME-6016. When set to zero (0), it allows both supervisory and
nonprivileged accesses. This bit has no effect on short I/O (A16) accesses to
the VMIVME-6016. (There is a jumper for that function; see Section 5.3.1.)

Bit 03: Transmit BREAK Signals (TXBRK) – When this bit is set from zero (0) to
one (1), a BREAK signal is sent on each active channel for which a bit is set
in the BREAK register. Bits are automatically cleared in BREAK as the
signals are sent, and when all the requested BREAKs have been sent, the
TXBRK bit is automatically reset to zero (0).
4-5

500-006016-000
Bit 02: Run Self-Test (SLFTST) – When this bit is set from zero (0) to one (1), the
self-tests requested in the ST_PROC register are run in order of most
significant ST_PROC bit to least significant ST_PROC bit. When the tests
have run, or a failure occurs, the testing stops and the SLFTST bit is
automatically reset to zero (0). The STBUSY bit of the GST should be
one (1) until the self-test is complete. The ANYERR and STFAIL bits of the
GST should be zero (0) if the self-test passed.

Bit 01: Reset Board (RST_BRD) – When this bit is set to a one (1), the
VMIVME-6016 goes through nearly all the POR test sequence (excepting
only the RAM shake) and presents itself as if power had just come on. Note
that the board briefly "disappears" from short I/O space as it executes the
POR tests. See Sections 4.1 and 4.2.2.

Bit 00: LED Control (LEDN) – When this bit is set to one (1), the LED on the front
panel is off. Clear this bit to turn the LED on. The LED is off after the
power-up (or reset) self-tests complete successfully. (The LED flashes on
and off during these self-tests.)

4.2.5 Command Register 1 (CR1)

This register controls the BERR* timer and the arbitration mode. Bits not
mentioned below must remain set to zero (0).

Bit 03: Arbiter Mode (ARBMOD) – This bit has no effect unless the VMIVME-6016
is in the VMEbus slot 1 as the system controller and the SCON jumper is
installed (see Section 5.3.2 for details). If the VMIVME-6016 is the system
controller, a zero in this bit causes the VMIVME-6016 VMEbus arbiter to
use a round-robin arbitration scheme, while a one (1) causes it to use a
prioritized arbitration scheme.

Table 4.2.5-1. Command Register 1 Bit Map

Global Offset $05 CR1 (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

0 0 0 0 ARBMOD BERR_TO
M6016/T4.2.5-1
4-6

500-006016-000
Bits 02-00: SCON Mode VMEbus Timeout (BERR_TO) – When the VMIVME-6016
is system controller, this field sets the maximum allowed time before a
BUS ERROR signal is issued in the absence of a DTACK for any
VMEbus access. The maximum time codes mean:

When the VMIVME-6016 is not the system controller, any value in
BERR_TO other than binary 111 selects a nominal 50 microsecond
timeout, and 111 disables the timer. In this case, the timer applies only
to VMIVME-6016 accesses.

4.2.6 GO Bits Register (GO)

The GO register has a GO bit for each of the 16 channels. After the Channel
Control Blocks and the Global Registers have been set up, setting the GO bit for a
given channel to one (1) lets the VMIVME-6016 activate that channel. Activity for a
channel stops if the corresponding GO bit is set to zero (0). Bit 15 (the MSB)
corresponds to channel 15, bit 14 is for channel 14, and similar mapping goes through
bit 0 (the LSB), which is for channel 0. Setting GO for a channel automatically clears
TX and RX for that channel. This register should be modified using an indivisible RMW
instruction. See Section 4.4.9 for details.

Bit 2 Bit 1 Bit 0 Maximum Time

0 0 0 4 microseconds

0 0 1 16 microseconds

0 1 0 32 microseconds

0 1 1 64 microseconds

1 0 0 128 microseconds

1 0 1 256 microseconds

1 1 0 512 microseconds

1 1 1 Infinite

Table 4.2.6-1. GO Bits Register Bit Map

Global Offset $06 GO (Read/Write)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

Channel
15

Channel
14

Channel
13

Channel
12

Channel
11

Channel
10

Channel
09

Channel
08

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

Channel
07

Channel
06

Channel
05

Channel
04

Channel
03

Channel
02

Channel
01

Channel
00

M6016/T4.2.6-1
4-7

500-006016-000
4.2.7 Transmit Request Bits Register (TX)

The TX register has a transmit request bit for each of the 16 channels.
Provided the GO bit for a channel is set, setting the corresponding TX bit will request
the VMIVME-6016 to accept data from the transmit user buffer and transfer it through
the internal ring buffer to the transmitter. Bit 15 (the MSB) corresponds to channel 15,
bit 14 is for channel 14, and similar mapping goes through bit 0 (the LSB), which is for
channel 0. These bits can be understood as notifying the VMIVME-6016 that the user
buffer contains new data to be transmitted. This register should be modified using an
indivisible RMW operation. See Section 4.4.9 for details.

4.2.8 Receive Accept Bits Register (RX)

The RX register has a receive-accept bit for each of the 16 channels.
Provided the GO bit for a channel is set, setting the corresponding RX bit notifies the
VMIVME-6016 that the data in the user receive buffer has been accepted and that new
data can be put into the user receive buffer from the internal ring buffer. Bit 15 (the
MSB) corresponds to channel 15, bit 14 is for channel 14, and similar mapping goes
through bit 0 (the LSB), which is for channel 0. Note that because there is no internal
ring buffer in the on-board ring buffer case (UB_RING = 1, see Section 4.3.11), the RX
bits for channels configured this way have no function and are ignored. This register
should be modified using an indivisible RMW operation. See Section 4.4.9 for details.

Table 4.2.7-1. Transmit Request Bits Register Bit Map

Global Offset $08 TX (Read/Write)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

Channel
15

Channel
14

Channel
13

Channel
12

Channel
11

Channel
10

Channel
09

Channel
08

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

Channel
07

Channel
06

Channel
05

Channel
04

Channel
03

Channel
02

Channel
01

Channel
00

Table 4.2.8-1. Receive Accept Bits Register Bit Map

Global Offset $0A RX (Read/Write)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

Channel
15

Channel
14

Channel
13

Channel
12

Channel
11

Channel
10

Channel
09

Channel
08

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

Channel
07

Channel
06

Channel
05

Channel
04

Channel
03

Channel
02

Channel
01

Channel
00

M6016/T4.2.8-1

M6016/T4.2.7-1
4-8

500-006016-000
4.2.9 Send Break Bits Register (BREAK)

The BREAK register has a bit for each of the 16 channels. After the Channel
Control Blocks and the Global Registers have been set up, setting the BREAK bit for
a given channel to one (1), and then setting the TXBRK bit, makes the VMIVME-6016
send a BREAK signal on that channel. The bit automatically resets to zero (0) when
the BREAK signal starts. The BREAK is an RS-232 spacing level lasting for a number
of milliseconds set by the BRK_DUR register in the Channel Control Block.

4.2.10 Control Register 2 (CR2)

This register controls the VMEbus request level, release mode, and fairness
timeout for master accesses to the VMEbus.

Bits 07-06: Bus Request Level (BRLEVEL) – This field controls the VMEbus bus
request level for the VMEbus DMA accesses during transfers. The
default value is binary 11, indicating a bus request level of 3, the highest
value available.

Table 4.2.9-1. Send Break Bits Register Bit Map

Global Offset $0C BREAK (Read/Write)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

Channel
15

Channel
14

Channel
13

Channel
12

Channel
11

Channel
10

Channel
09

Channel
08

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

Channel
07

Channel
06

Channel
05

Channel
04

Channel
03

Channel
02

Channel
01

Channel
00

Table 4.2.10-1. Control Register 2 Bit Map

Global Offset $0E CR2 (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

BRLEVEL RELMOD FAIR_TO

M6016/T4.2.10-1

M6016/T4.2.9-1
4-9

500-006016-000
Bits 05-04: VMEbus Release Mode (RELMOD) – This field determines the
VMEbus Release Mode when the VMIVME-6016 is the bus Master. The
Release Mode codes are:

The default value for this field is binary 00, indicating Release on
Request mode.

Bits 03-00: VMEbus Fairness Timeout (FAIR_TO) – The value in this bit field
determines how many 2 microsecond intervals, if any, the
VMIVME-6016 will wait before asserting its VMEbus request if another
VMEbus master is already using the bus. This fair-request scheme of
bus arbitration avoids the bus starvation that can occur when multiple
bus masters exist, especially multiple masters at the same priority level.
A value of zero (0) here disables the fairness timeout and a value of
binary 1111 causes the VMIVME-6016 to wait indefinitely for the other
bus master to relinquish control. Note that the actual timeout value may
be up to 2 microseconds longer than programmed. The default value for
this field is binary 0010, indicating a 4 microsecond timeout.

4.2.11 Master Size and Address Modifier Register (SZ_AM)

The Master Size and Address Modifier Register is a read/write byte. This
register contains the information needed to read or write data directly to or from
VMEbus memory.

Bit 05 Bit 04 Code Description

0 0 RELROR Release on Request

0 1 RELRWD Release when Done

1 0 RELROC Release on BCLR*

1 1 RELBCAP Bus capture and hold

Table 4.2.11-1. Master Size and Address Modifier Register Bit Map

Global Offset $10 SZ_AM (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

VMESIZE ADDRMOD

M6016/T4.2.11-1
4-10

500-006016-000
Bits 07-06: VMESIZE – contains a two-bit code representing the data width of the
VMEbus access. The codes are:

Bits 05-00: ADDRMOD – directly corresponds to the VMEbus address modifier
(AM) bits AM5-AM0, bit 5 corresponding to AM5 through bit 0
corresponding to AM0. Typical (hexadecimal) VMEbus address modifier
values are:

The power up or reset default value for the SZ_AM register is $B9 indicating
standard A24 nonprivileged VMEbus addressing using 16-bit transfers.

Bit 07 Bit 06 Code Description

0 0 VME_SIZE_32 32-bit size as VMEbus master

1 0 VME_SIZE_16 16-bit size as VMEbus master

0 1 VME_SIZE_8 8-bit size as VMEbus master

Value Description

$09 Extended (A32) Nonprivileged Data

$0A Extended (A32) Nonprivileged Program

$0B Extended (A32) Nonprivileged Block Transfer

$0D Extended (A32) Supervisory Data

$0E Extended (A32) Supervisory Program

$0F Extended (A32) Supervisory Block Transfer

$29 Short I/O (A16) Nonprivileged Data

$2D Short I/O (A16) Supervisory Data

$39 Standard (A24) Nonprivileged Data

$3A Standard (A24) Nonprivileged Program

$3B Standard (A24) Nonprivileged Block Transfer

$3D Standard (A24) Supervisory Data

$3E Standard (A24) Supervisory Program

$3F Standard (A24) Supervisory Block Transfer
4-11

500-006016-000
4.2.12 Self-Test Procedure Register (ST_PROC)

This register determines the set of self-test procedures that the CPU
executes when the SLFTST bit in the CR0 register is set to one.

The following table is a brief summary of the tests. See Section 4.6 for
details on self-testing.

4.2.13 Error Interrupt Control Register (ER_MSK)

The Error Interrupt Control Register is a read/write byte. Bits not mentioned
below must remain set to zero (0).

Bit 07: Register Busy Transition to Zero (REGBUSY_MSK) – When this bit is
set to one (1), a global interrupt will occur whenever data written to the
CR0, CR1, GO, TX, or the RX registers has been interpreted by the
firmware of the VMIVME-6016. This interrupt may be used as a
handshake method in place of setting and polling the REGBUSY bit of
the GST register.

Table 4.2.12-1. Self-Test Procedure Register Bit Map

Global Offset $11 ST_PROC (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

RESERVED 0 TEST_DMA_R TEST_DMA_W TEST_BERR TEST_UART TEST_TIMER TEST_VINT

Bit Code Description

Bit 5 TEST_DMA_R VMEbus DMA read (bus --> board) test

Bit 4 TEST_DMA_W VMEbus DMA write (board --> bus) test

Bit 3 TEST_BERR Self-access BERR test

Bit 2 TEST_UART UART test (local loopback)

Bit 1 TEST_TIMER Timer test

Bit 0 TEST_VINT VMEbus interrupt test

Table 4.2.13-1. Error Interrupt Control Register Bit Map

Global Offset $12 ER_MSK (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

REGBUSY_MSK RFNZ_MSK ST_FAIL_MSK HDWE_ERR_MSK BERR_MASK ER_LEVEL

M6016/T4.2.12-1

M6016/T4.2.13-1
4-12

500-006016-000
Bit 06: Reserved Field Nonzero (RFNZ_MSK) – When this bit is set to one (1),
a Reserved Field set to nonzero (RFNZ status) can trigger this
interrupt.

Bit 05: Self-Test Failed (ST_FAIL_MSK) – When this bit is set to one (1), a
self-test failure (STFAIL status) can trigger this interrupt.

Bit 04: Hardware Error (HDWE_ERR_MSK) – When this bit is set to one (1), a
hardware error (HDWEERR status) can trigger this interrupt.

Bit 03: Bus Error (BERR_MSK) – When this bit is set to one (1), a VMEbus
error (BERR status) caused by a transfer operation initiated by this
board can trigger this interrupt.

Bits 02-00: VMEbus Interrupt Level (ER_LEVEL) – These three bits set the level of
the error interrupt from 1-7. If all three bits are clear, the interrupt is
effectively disabled since there is no VMEbus level 0 interrupt.

4.2.14 Error Interrupt Vector Register (ER_VEC)

The Error Interrupt Vector register is a byte-wide read/write interrupt vector
register. This register should be initialized to hold a standard VMEbus interrupt vector.

4.2.15 Buffer Base Register (BUFBASE)

The Buffer Base register is a read/write longword. When the VMIVME-6016
is in master mode (MASTER bit in CR0), this register contains the VMEbus address
for all the user buffers. The contents of the Master Size and Address Modifier Register
(SZ_AM) are used to determine access type when addressing the buffers. Note that
during VMEbus standard (A24) addressing, the most significant byte of BUFBASE is
ignored.

Table 4.2.14-1. Error Interrupt Vector Register Bit Map

Global Offset $13 ER_VEC (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

VECTOR

M6016/T4.2.14-1
4-13

500-006016-000
When the VMIVME-6016 is in slave mode, BUFBASE determines the
standard or extended VMEbus base address of the on-board memory block used for
user buffers. The SLV_32 bit in CR0 determines whether the VMIVME-6016 responds
to standard (A24) or extended (A32) addressing. The slave mode base address must
be a multiple of a number that depends on the amount of memory populated:

4.2.16 Global Status Register (GST)

The Global Status register is a 16-bit register that contains bits that reflect
VMIVME-6016 status for conditions independent of channel number. Bits not
mentioned below must remain set to zero (0). VMIC recommends that this register be
modified using indivisible RMW operations. See Section 4.4.9 for details. To modify
just the REGBUSY bit, a byte write can be performed to offset $19 instead of using an
RMW operation.

Bit 15: Any Error (ANYERR) -- This bit is set to one (1) whenever one or more of the
following bits are set:

Bit 14: Global Register Illegal (GLBILL) – This bit is set to one (1) whenever the
VMIVME-6016 detects that the content of a global register violates the
restrictions on it.

Total Memory User Memory Slave Base Multiplier

256 Kbytes 128 Kbytes 256 Kbytes ($40000)

512 Kbytes 256 Kbytes 512 Kbytes ($80000)

1 Mbyte 512 Kbytes 1 Mbyte ($100000)

2 Mbytes 1 Mbyte 2 Mbytes ($200000)

Table 4.2.16-1. Global Status Register Bit Map

Global Offset $18 GST (Read/Write)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

ANYERR GLBILL STBUSY SCON RFNZ STFAIL HDWEERR BERR

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

REGBUSY 0 0 0 0 0 0 0

Bit Description

GLBILL Illegal Global Register Content

RFNZ Reserved Field Nonzero

STFAIL Self-Test Error

HDWEERR Hardware Error

BERR BERR* on VMEbus master cycle

M6016/T4.2.16-1
4-14

500-006016-000
Bit 13: Self-Test Busy (STBUSY) – This bit is set when the VMIVME-6016 is busy
running one of the tests controlled by the Run Self-Test bit (SLFTST) of the
CR0 register. After initializing these tests, the host program should wait for
this bit to clear before testing the Self-Test Failed bit (STFAIL) in this register
to determine the success of the self-tests.

Bit 12: VMEbus System Controller (SCON) – This bit is set to one (1) if the
VMIVME-6016 board is jumper-configured as a VMEbus slot 1 controller.
See Section 5.3.2 for details.

Bit 11: Reserved Field Nonzero (RFNZ) – This bit is set to one (1) if any reserved
bits in any VMIVME-6016 registers are nonzero. If this bit is set, the Any
Error bit (bit 15) will also be set. Note that unused register space, which
includes space or fields not mentioned in Sections 4.2 and 4.3, is also
reserved and must be completely clear. All reserved bits are clear by default
after power-up or reset.

Bit 10: Self-Test Failed (STFAIL) – This bit is set to one (1) if any of the self-tests
requested by the Run Self-Test bit (SLFTST) of the CR0 Register have
failed. This bit is not valid if the Self-Test Busy bit is set. If this bit is set, the
Any Error bit (ANYERR) will also be set.

Bit 09: Hardware Error (HDWEERR) – If this bit is set to one (1), some local
hardware error other than a VMEbus Error (BERR) has occurred. If this bit is
set, the Any Error bit (ANYERR) will be set as well.

Bit 08: VMEbus Error (BERR) – This bit is set if the VMIVME-6016 initiates an
operation that results in a bus error. Note that the VMIVME-6016 has a
programmable bus timer if it is configured as the system controller (see
Section 5.3.2 for details) and has only a fixed-interval bus timer (about
50 microseconds) otherwise. This bit will also be set, however, if a
VMIVME-6016 DMA transfer points to the VMIVME-6016 board (a self
access). If this bit is set, the Any Error bit (ANYERR) will be set as well.

Bit 07: Register Busy (REGBUSY) – Any write operation into any area of the CR0,
CR1, GO, TX, or RX registers causes an interrupt to the firmware on the
VMIVME-6016. Until the VMIVME-6016 firmware interprets the new data,
the contents of these registers may not reflect the expected results. Register
Busy provides a handshake method that allows the host computer software
to ensure that the register contents have taken effect. The following code
fragment illustrates the use of REGBUSY.
4-15

500-006016-000
/*
* ..
* Sample code fragment to set a GO bit.
* GSTLO refers to lower byte of GST at offset $19.
* ..
*/

#define REGBSY 0X80
while((v6016->GSTLO & REGBSY) != 0); /* let previous finish */
v6016->GSTLO |= REGBSY; /* Avoid races by presetting REGBUSY */
v6016->GO |= 0x400; /* Set a GO bit */

The following code fragment may be used when reading the registers:

/*
* ..
* Sample code fragment to read the CR0 register and
* print a message if the LED is emitting light
* ..
*/

while((v6016->GSTLO & REGBSY)!= 0); /*let previous finish */
if (v6016->CR0 & LEDN == 0) puts ("The LED is on");

NOTE:

THE ABOVE HANDSHAKE APPLIES ONLY TO THE CR0, CR1, GO, TX, AND RX REGISTERS; THE
REMAINING VMIVME-6016 REGISTERS MAY BE WRITTEN OR READ WITHOUT WAITING FOR
REGBUSY TO BE ZERO.

The REGBUSY_MSK interrupt (see Section 4.2.13) may be used to get
notification, rather than by polling the GST. See also Section 4.4.8.

4.2.17 Master Granularity (MAS_GRN)

This register is meaningful only in master mode (user buffers off-board). If
the number here is zero (0), it represents 256. The user buffer’s TX and RX are each
allocated this value times 4096 bytes in VMEbus space. Total buffer space is
MAS_GRN times 4096 times 32 buffers. The value of SZ_UBUF for each channel
determines how much of the buffer space allocated for the channel is actually used.

Table 4.2.17-1. Master Granularity Register Bit Map

Global Offset $1A MAS_GRN (Read/Write)

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

VALUE

M6016/T4.2.17-1
4-16

500-006016-000
4.3 CHANNEL CONTROL BLOCKS

Each of the 16 channels of the VMIVME-6016 has a 14-byte Channel
Control Block associated with it. These CCBs follow the Global Registers described in
Section 4.2, in ascending order, from channel 0 through channel 15. Table 4.3.1
shows the structure of one of the CCBs, followed by its description. Each CCB has the
same mapping. The CCB registers are offsets from the base offset of the associated
CCB. The Global Registers and the CCBs together take up exactly 256 bytes of short
I/O space.

The registers in a CCB are valid only for the particular channel with which
the CCB is associated. The VMIVME-6016 can modify the Channel Status (CST)
registers at any time. It does not modify any other register in any CCB, except to set
up default conditions at power up or hard reset time.

The user should not modify any register in a CCB while its channel is active
(associated GO bit set to one).

Table 4.3-1. VMIVME-6016 Channel Control Block Map

CCB
Offset Name Meaning

$00 CST Channel Status

$02 CH_MSK Channel Interrupt Mask

$03 CH_VEC Channel Interrupt Vector

$04 EOB End-of-block code

$05 XOFF Flow control XOFF code

$06 XON Flow control XON code

$07 BRK_DUR BREAK duration in ms +0/-1

$08 SZ_RING Internal Ring size

$09 LO_RING Internal Ring low water mark

$0A HI_RING Internal Ring high water mark

$0B CH_CON1 Channel Control Byte 1

$0C CH_CON2 Channel Control Byte 2

$0D SZ_UBUF User Buffer Size
M6016/T4.3-1
4-17

500-006016-000
4.3.1 Channel Status Register (CST)

This register contains all the status bits peculiar to its channel. The user
should take care with setting or clearing bits in this register, as the VMIVME-6016 may
set or clear bits here at its convenience. This register should be modified with an
indivisible RMW operation. See Section 4.4.9 for details.

Bit 15: DCD (Data-Carrier-Detect) Changed State (DCD_COS) – A one (1) in this
bit indicates that the UART hardware has seen a change of state on the
incoming DCD signal.

Bit 14: CTS (Clear-To-Send) Changed State (CTS_COS) – A one (1) in this bit
indicates that the UART hardware has seen a change of state on the
incoming CTS signal.

Bit 13: DCD State (DCD) – This bit reflects the current state of the incoming DCD
line. A one represents an RS-232 space (positive voltage), and a zero
represents an RS-232 mark (negative voltage).

Bit 12: CTS State (CTS) – This bit reflects the current state of the incoming CTS
line. A one (1) represents an RS-232 space (positive voltage), and a zero (0)
represents an RS-232 mark (negative voltage).

Bit 11: Host Interrupt Routine Busy (INTBSY) – Whenever the VMIVME-6016
issues a channel interrupt to the host, it also sets the INTBSY bit. The
VMIVME-6016 will not issue another interrupt for ANY channel until the host
resets INTBSY. These actions prevent the host from being overrun by
channel interrupts. The VMIVME-6016 will not forget to issue requested
interrupts, but when it eventually gets permission to interrupt the host
because the host reset INTBSY, the CST may reflect several reasons for the
interrupt. The host should examine the CST (or several CSTs, if several
channels share the same interrupt vector) for all possible reasons for a
channel interrupt before resetting INTBSY (or the several INTBSYs) and
allowing more interrupts.

Table 4.3.1-1. Channel Status Register Bit Map

CCB Offset $00 CST

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08

DCD_COS CTS_COS DCD CTS INTBSY ILL URCV_RDY UTX_RDY

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

BRK_RCVD FE PE OVERRUN TXEMT TXRDY FFUL RXRDY

M6016/T4.3.1-1
4-18

500-006016-000
Bit 10: Illegal Code (ILL) – A one (1) in this bit indicates that one or more fields in
the CCB contained an illegal value when the GO bit for this channel was set
to a one (1).

Bit 09: User Receive Buffer Has Data (URCV_RDY) – If this bit is a one (1), the user
buffer has data in it ready for the user to take. After taking the data, the user
should set the RX register bit for the channel to inform the VMIVME-6016
(unless the channel is configured for ring buffers on-board), which will then
load more data into the user buffer. The user must reset URCV_RDY before
either taking the data or setting the appropriate RX bit. URCV_RDY sets for
one of two reasons: the EOB character (see Section 4.3.4) has been
received and stored, or input has timed out (see Section 4.3.12).

Bit 08: User Transmit Buffer Can Take Data (UTX_RDY) – If this bit is a one (1), the
user can write new data to the transmit buffer. To make the VMIVME-6016
transmit the new data, the user must set the appropriate bit in the TX
register, whereupon the VMIVME-6016 accepts the data and begins
transmitting it. The user must reset UTX_RDY before setting the appropriate
TX bit. Note that if the user buffer is a ring, the user can put new data into it
at any time that the pointers are such that there is enough space in the
buffer; the VMIVME-6016 will not recognize the presence of the new data,
however, unless it is still busy transmitting, or until the user sets the TX bit.

The following eight CST bits are a ones copy of the UART status register
contents for the channel, meaning that once one of these bits sets, the VMIVME-6016
will never clear it. The host must reset these bits. They are updated at the convenience
of the on-board CPU, and so will lag the actual UART status when data is being
transmitted and/or received.

Bit 07: BREAK received (BRK_RCVD) – This bit, when a one (1), indicates that an
RS-232 space level has been received on the RXD line for more bit times
than make up one character.

Bit 06: Framing Error (FE) – This bit, when a one (1), indicates that a stop bit was
not detected at the expected time when the UART received a character. The
stop bit check is made in the middle of the first stop bit position.

Bit 05: Parity Error (PE) – A one (1) in this bit means that an incoming character
had incorrect parity. This bit is never set if “none” is selected in PAR_TYP.

Bit 04: Receiver Overrun (OVERRUN) – A one (1) in this bit indicates that one or
more incoming characters have been lost. This should not happen unless
there is no flow control, or flow control has failed, or a throughput restriction
has been violated.
4-19

500-006016-000
Bit 03: Transmitter Empty (TXEMT) – A one (1) in this bit indicates that the
transmitter has run out of data to send. This condition occurs when there is
no data in the transmit buffer or the UTX_RDY bit has not been reset by the
user.

Bit 02: Transmitter Ready (TXRDY) – A one (1) in this bit means that the UART
hardware can take data into its holding register. The transmitter may or may
not be empty.

Bit 01: Receiver FIFO full (FFUL) – A one (1) in this bit means that the UART
hardware receiver FIFO has filled, that is, the on-board CPU can read three
or possibly four characters from the UART.

Bit 00: Receiver Ready (RXRDY) – A one (1) in this bit indicates that the UART has
at least one character in its hardware receiver FIFO.

4.3.2 Channel Interrupt Mask Register (CH_MSK)

This register controls the reasons for sending a channel specific interrupt to
the VMEbus. The VMIVME-6016 issues a channel interrupt whenever a
mask-selected event occurs that can also set the corresponding CST status bit. It does
not matter whether or not the status is already set. The host is responsible for resetting
these status bits.

Bit 07: CTS or DCD changed state (COS_MSK) – When set to one (1), this bit
sends an interrupt whenever either the CTS or DCD incoming lines
change state.

Bit 06: FE, PE, OVERRUN, or illegal code (ERR_MSK) – When set to one (1),
this bit sends an interrupt whenever one or more of these errors are
detected.

Bit 05: BREAK received (BREAK_MSK) – When set to one (1), this bit sends
an interrupt whenever the receive function detects an incoming BREAK.

Bit 04: User receive buffer has data (RCV_MSK) – When set to one (1), this bit
sends an interrupt whenever the VMIVME-6016 deposits data in the
user receive buffer and sets URCV_RDY.

Table 4.3.2-1. Channel Interrupt Mask Register Bit Map

CCB Offset $02 CH_MSK

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

COS_MSK ERR_MSK BREAK_MSK RCV_MSK TX_MSK CH_LEVEL

M6016/T4.3.2-1
4-20

500-006016-000
Bit 03: User transmit buffer can take data (TX_MSK) – When set to one (1),
this bit sends an interrupt whenever the user transmit buffer goes from
the full state to not full (ring), or can take data (linear) and sets
UTX_RDY.

Bits 02-00: Channel Interrupt Level (CH_LEVEL) – This field sets the level of the
VMEbus interrupt for channel interrupts. A zero (0) here disables the
channel interrupts.

4.3.3 Channel Interrupt Vector Register (CH_VEC)

This register holds the vector presented to the VMEbus during an IACK
cycle acknowledging a channel interrupt.

4.3.4 End-of-Block Code Register (EOB)

If this register is nonzero, reception of a character with its value causes
URX_RDY to set (and send a VMEbus interrupt if RCV_MSK is enabled) even if the
user receive buffer is not full.

Table 4.3.3-1. Channel Interrupt Vector Register Bit Map

CCB Offset $03 CH_VEC

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

VECTOR

Table 4.3.4-1. End-of-Block Code Register Bit Map

CCB Offset $04 EOB

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

VALUE

M6016/T4.3.3-1

M6016/T4.3.4-1
4-21

500-006016-000
4.3.5 Flow Control XOFF Code Register (XOFF)

This register holds the code, if received, to be used to stop the transmitter,
provided FLOWCON is set either to XON/XOFF or to ANY/XOFF.

4.3.6 Flow Control XON Code Register (XON)

This register holds the code which, if received, restarts the transmitter,
provided FLOWCON is set to XON/XOFF.

4.3.7 BREAK Duration Register (BRK_DUR)

This register determines the duration of transmitted BREAK signals. A
BREAK is sent whenever the BREAK register bit associated with the channel is set to
one (1), TXBRK is set to one (1), and lasts the number of milliseconds set in
BRK_DUR with a maximum of 255 ms possible. When the BREAK ends, the BREAK
bit resets to zero (0).

Table 4.3.5-1. Flow Control XOFF Code Register

CCB Offset $05 XOFF

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

CODE

Table 4.3.6-1. Flow Control XON Code Register Bit Map

CCB Offset $06 XON

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

CODE

Table 4.3.7-1. BREAK Duration Register Bit Map

CCB Offset $07 BRK_DUR

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

DURATION IN MILLISECONDS

M6016/T4.3.5-1

M6016/T4.3.7-1

M6016/T4.3.6-1
4-22

500-006016-000
4.3.8 Internal Ring Size Register (SZ_RING)

The internal (not the user) ring buffer is SZ_RING blocks of 128 bytes long.
A value of zero is not allowed and causes the ILL bit in the CST to be set to one (1).

The maximum allowable value of SZ_RING depends on the amount of
memory available on-board:

4.3.9 Internal Ring Low Water Mark Register (LO_RING)

This register sets the number of bytes stored in the input internal ring below
which flow control restarts input. See Section 4.2.11.

Table 4.3.8-1. Internal Ring Size Register Bit Map

CCB Offset $08 SZ_RING

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

NUMBER OF BLOCKS

Total Memory User Memory
Max SZ_RING

(decimal)

256 Kbytes 128 Kbytes 8

512 Kbytes 256 Kbytes 40

1 Mbyte 512 Kbytes 104

2 Mbytes 1 Mbyte 232

Table 4.3.9-1. Internal Ring Low Water Mark Register Bit Map

CCB Offset $09 LO_RING

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

NUMBER OF BYTES

M6016/T4.3.8-1

M6016/T4.3.9-1
4-23

500-006016-000
4.3.10 Internal Ring High Water Mark Register (HI_RING)

This register sets the number of bytes not in use in the input internal ring
below which flow control suspends input. See FLOWCON, below.

4.3.11 Channel Control Byte 1 Register (CH_CON1)

This register controls the kind of user buffer (linear or ring), flow control
strategy, and the bit rate for the channel.

Bit 07: User Buffer Type (UB_RING) –This bit, if set to one (1), implements a
ring mode user buffer. In ring mode, the first two bytes (or four bytes
when using Master mode) of the buffer are an input pointer and the next
two bytes (or four bytes in Master mode) are an output pointer as
offsets from the start of the actual buffer, which begins immediately
after the output pointer. The terms "input pointer" and "output pointer"
refer to input and output from the point of view of the associated buffer,
not with respect to the host or the VMIVME-6016. The user examines
both pointers to determine how full the ring buffer is. The buffer is empty
if the pointers are equal. The buffer is full if the input pointer is one
behind the output pointer. For a receive buffer, the user extracts data
from the buffer and then advances the output pointer. For a transmit
buffer, the user deposits data in the buffer and then advances the input
pointer.

NOTE:

THE USER SHOULD NEVER MODIFY THE OUTPUT POINTER OF A TRANSMIT BUFFER OR THE
INPUT POINTER OF A RECEIVE BUFFER; THESE ARE MAINTAINED BY THE VMIVME-6016.
SERIOUS MALFUNCTIONS MAY OCCUR IF EITHER OF THESE POINTERS IS CHANGED BY THE
USER/HOST; EVEN A SYSTEM-LEVEL CRASH COULD OCCUR.

Table 4.3.10-1. Internal Ring High Water Mark Register Bit Map

CCB Offset $0A HI_RING

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

NUMBER OF BYTES

Table 4.3.11-1. Channel Control Byte 1 Register Bit Map

CCB Offset $0B CH_CON1

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 BIt 02 Bit 01 Bit 00

UB_RING FLOWCON BAUD

M6016/T4.3.10-1

M6016/T4.3.11-1
4-24

500-006016-000
If the user has selected both ring buffer and slave mode (buffers
on-board), there is NO internal ring buffer; input and output go to and
from the user buffers directly. (The internal buffer is eliminated to
improve throughput.) Consequently for this case, the RX bit has no
function, SZ_RING is not used, and the HI_RING and LO_RING
quantities refer to the user buffers.

If UB_RING is set to zero, the user buffer is a linear buffer (no pointers).
In this case, the user examines the URCV_RDY or UTX_RDY bits in the
CST register and reads or writes the entire buffer contents accordingly.
The first two bytes (or four bytes when using Master mode) of a linear
buffer form a 16-bit (or 32-bit in Master mode) count of the number of
meaningful characters in the buffer; the actual buffer of characters
follows this counter.

The VMIVME-6016 implements the channels with SCC2698B octal
UART devices; the channels are in some way controlled in pairs. The
pairs are: 0,1 2,3 4,5 6,7 etc. If the user buffers are on-board (Slave
mode), UB_RING in the members of a pair must be the same. For
example, if all the user buffers are on-board and if channel 12 is
configured for ring buffers (UB_RING=1), then channel 13 must be
configured for ring buffers. No such restriction applies if the user buffers
are off-board (Master mode).

Bits 06-05: Flow Control (FLOWCON) – This field allows the VMIVME-6016 to act
to prevent loss of data due to data rate restrictions at either end of a
channel. The transmit function reacts to XOFF or the negation of CTS
by stopping transmission until the receiver detects an XON (or any
character if so selected), or CTS reasserts. The receiver function sends
an XOFF or negates RTS when the internal receive ring exceeds the
high water mark (HI_RING), and sends XON or asserts RTS when the
internal receive ring goes below the low water mark (LO_RING). The
user can optimize flow control by adjusting the internal ring size
(SZ_RING) and the high and low water marks. The codes for
FLOWCON are:

Bit 06 Bit 05 Flow Control

0 0 None

0 1 XON/XOFF

1 0 Any/XOFF

1 1 RTS/CTS
4-25

500-006016-000
Bits 04-00: Baud rate for both TX and RX (BAUD) – This field controls the bit rate
for both transmitted and received data. The coding for the BAUD field is:

The VMIVME-6016 implements the channels with SCC2698B octal UART
devices; the channels are in some ways controlled in pairs. Channels 0 and
1 have the most significant bit of their BAUD fields in common, for example.
Therefore, the BAUD fields for an even-odd pair of channels must have the
SAME most significant bit value.

4.3.12 Channel Control Byte 2 Register (CH_CON2)

This register controls the parity and number of bits per character of both
transmitted and received data.

Bit 04 Bit 03 Bit 02 Bit 01 Bit 00
Baud
Rate

Bit 04 Bit 03 Bit 02 Bit 01 Bit 00
Baud
Rate

0 0 0 0 0 50 1 0 0 0 0 75

0 0 0 0 1 110 1 0 0 0 1 110

0 0 0 1 0 134.5 1 0 0 1 0 38400

0 0 0 1 1 200 1 0 0 1 1 150

0 0 1 0 0 300 1 0 1 0 0 300

0 0 1 0 1 600 1 0 1 0 1 600

0 0 1 1 0 1200 1 0 1 1 0 1200

0 0 1 1 1 1050 1 0 1 1 1 2000

0 1 0 0 0 2400 1 1 0 0 0 2400

0 1 0 0 1 4800 1 1 0 0 1 4800

0 1 0 1 0 7200 1 1 0 1 0 1800

0 1 0 1 1 9600 1 1 0 1 1 9600

0 1 1 0 0 38400 1 1 1 0 0 19200

Table 4.3.12-1. Channel Control Byte 2 Register Bit Map

CCB Offset $0C CH_CON2

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

INP_TIMEOUT TWO_STOP PAR_TYP PAR_ODD SZ_CHAR

M6016/T4.3.12-1
4-26

500-006016-000
Bits 07-06: Input Timeout Mode (INP_TIMEOUT) – This field selects the input
timeout method for setting URCV_RDY and the corresponding host
interrupt. If incoming characters stop arriving for the chosen timeout
period, URCV_RDY will set and the selected host interrupt will occur,
just as if the EOB character had been received. (URCV_RDY may also
be set by the reception of an EOB character; see Section 4.3.4.) The
timeout method coding is:

Bit 05: Two Stop Bits (TWO_STOP) – This bit, if set to a one (1), will cause all
transmitted characters for the channel to end with a two bit-time stop
(RS-232 mark state). If this bit is a zero, the stop will be one bit-time
long.

Bits 04-03: Transmit/Receive Parity Type (PAR_TYP) – This field determines
whether or not a parity bit exists in both transmitted and received data,
and if so, its sense. The code for PAR_TYP is:

Bit 02: Parity Sense is Odd (PAR_ODD) – This bit determines the sense of the
parity bit, if used. If odd or even parity is selected, the parity is odd if
PAR_ODD is a one, and even if it is a zero. If forced parity is selected,
PAR_ODD is the value of the parity bit.

Bits 01-00: Bits/char not including parity bit (SZ_CHAR) – This field determines the
number of bits, exclusive of a possible parity bit, per transmitted or
received character. The coding is:

Bit 07 Bit 06 Timeout Mode

0 0 none

0 1
3 char times or break duration, whichever
is greater

1 0 1/2 second

1 1 1 second

Bit 04 Bit 03 Parity

0 0 Odd or Even, use PAR_ODD

0 1 Force to PAR_ODD state

1 0 No parity bit

Bit 01 Bit 00 Bits/Char

0 0 5

0 1 6

1 0 7

1 1 8
4-27

500-006016-000
4.3.13 User Buffer Size Register (SZ_UBUF)

This register determines the size of the user buffer in bytes.

In master mode, the size is 16 times the value in this register times the value
represented by the content of the global register MAS_GRN. If the SZ_UBUF value is
zero (meaning 256), the buffer size is 4096 times the value in the MAS_GRN register
(zero meaning 256). Buffers will be allocated starting at BUFBASE for the TX buffer
and RX buffer of Channel 0. Channel 1 will be at BUFBASE plus MAS_GRN times
4096 continued through Channel 15 (see Figure 4.3.13-1). In slave mode, the size is
128 times the value in the register (zero meaning 256), and the maximum allowable
value of SZ_UBUF depends on the amount of memory available on-board:

Figure 4.3.13-1. Buffers

Table 4.3.13-1. User Buffer Size Register Bit Map

CCB Offset $0D SZ_UBUF

Bit 07 Bit 06 Bit 05 Bit 04 Bit 03 Bit 02 Bit 01 Bit 00

User Memory
Max SZ_UBUF

(decimal)
Buffer
Size

128 Kbytes 32 4096

256 Kbytes 64 8192

512 Kbytes 128 16384

1 Mbyte 0 32768

CH0

CH1

RX
val(MAS_GRN)

x 4096

TX
val(MAS_GRN)

x 4096

val(MAS_GRN)
x val(SZ_UBUF)

x 16

val(MAS_GRN)
x val(SZ_UBUF)

x 16

val(SZ_UBUF)
x 128

val(SZ_UBUF)
x 128

4 K*

4 K*

4 K*

BUFBASE *If user memory
is 128 Kbytes.

M6016/T4.3.13-1

M6016/F4.3.13-1
4-28

500-006016-000
4.4 GENERAL PROGRAMMING DETAILS

4.4.1 Introduction

The VMIVME-6016 can perform data transfers automatically for up to 16
channels. These may be any mix of baud rates, byte formats, etc., but must all be for
the same VMEbus address space. The user must load the VMIVME-6016 on-board
registers with information for configuring the channels. After the registers have been
set up, the user must set the GO register bits for the appropriate channels to start the
VMIVME-6016. Table 4.4.1-1 (at the end of Section 4.4) is an alphabetized glossary
of the names of the various registers and their bit fields. Sections 4.2 and 4.3 describe
the registers in detail. As an example of how to use the glossary, suppose that the user
wants to set the channel interrupt level for channel 3 to level 5. CH_LEVEL in the
glossary shows that it is the rightmost three bits of the CH_MSK register (mask is $07).
The CH_MSK entry shows that it is at offset $02 within a CCB (Channel Control
Block). Because the Global Registers take up $20 bytes, and each CCB takes up $0E
bytes, the CCB for channel three begins at 20 + (3 x 0E) = $4A. Therefore, the user
should deposit 101 binary (5) in the rightmost three bits of short I/O $XX4C, where XX
is set by jumpers as shown in Section 5.3.1.

NOTE:

IT IS IMPORTANT TO REALIZE THAT ANY HARDWARE ERROR OR VMEbus ERROR
INTERRUPT THAT COMES FROM THE VMIVME-6016 MEANS THAT VMIVME-6016 ACTIVITY
HAS STOPPED. THE CPU MUST TAKE ACTION TO ALLOW ACTIVITY TO CONTINUE.

4.4.2 Channel Shutdown

The host computer should shut down activity on a channel before modifying
any of the CCB registers for the channel. If any global registers are to be modified,
except for the GST register, all channels should be shut down. The host shuts down
a channel by setting the REGBUSY bit in the GST register, resetting the GO register
bit for that channel, and then waiting for the REGBUSY bit to go to zero
(see Section 4.2.16).

4.4.3 Global Setup for Board Operation

The host should set up ER_MSK and ER_VEC before setting any other
registers. This allows the VMIVME-6016 to assert an error interrupt in response to
register set-up errors. For example, if the host sets some reserved field or register
nonzero, the RFNZ status bit would set, and ER_MSK and ER_VEC would (if so
masked) allow the VMIVME-6016 to interrupt the host.

The host must set the MASTER bit in CR0 to determine whether the
VMIVME-6016 operates in master mode (user buffers off-board) or in slave mode
(user buffers on-board). The meaning of some other registers and fields depend on
the setting of this bit.
4-29

500-006016-000
If the VMIVME-6016 will be in master mode (user buffers off-board), the
host must set up SZ_AM, CR1, and CR2. SZ_AM determines the width (VMESIZE),
and the AM bits (ADDRMOD) of master VMEbus transfers. CR2 determines the bus
request level (BRLEVEL), the release mode (RELMOD), and the fairness timeout
(FAIR_TO) for master transfers. In the slave mode, these two registers do not matter.
The BERR_TO field in CR1 determines VMEbus cycle timeout, or can disable the
timer. The ARBMOD bit in CR1 is meaningful only if the VMIVME-6016 is the VMEbus
System Controller in VMEbus slot 1 (see Section 5.3.2).

The BUFBASE register serves two purposes. In the master mode, it points
to the VMEbus address of the user transmit buffer for channel 0. (The other 31 user
buffers follow that one, alternating transmit and receive buffers in ascending channel
order.) In slave mode, BUFBASE is the programmable base VMEbus address of the
on-board user buffers, which are arranged in the on-board memory the same as they
are for the master mode.

Next, the host should set up the rest of CR0. In the slave mode, SLV_32
controls whether the VMIVME-6016 responds to standard or extended addressing,
SUPONLY controls whether the board responds only to supervisory or to both
supervisory and nonprivileged addressing, and SLV_OK allows the board to respond
as a VMEbus slave for user buffer space. Note that SLV_OK should not be set until
SUPONLY, SLV_32, and BUFBASE are set up correctly, or the VMIVME-6016 might
respond in an unintended way.

To complete the global setup, the host must ensure that all bits in the
BREAK and ST_PROC registers are zeros.

4.4.4 Channel Setup

For each channel to be run, the host must set up the associated CCB. The
first two bytes of the CCB comprise the CST register, which automatically initializes
when the host starts the channel.

The host should set the CH_MSK and CH_VEC registers to let the
appropriate interrupts be serviced by host interrupt service routines.

The EOB, XOFF, XON, BRK_DUR, SZ_RING, LO_RING, and HI_RING
registers should be loaded as needed. See the descriptions of these registers in
Section 4.3.

The SZ_UBUF register represents the amount of memory actually used
from the space allocated to each of the user transmit and receive buffers.

The host must set up the fields in CH_CON1 and CH_CON2 registers,
which control bits/character, parity, flow control, bits/second, and buffer architecture
(ring or linear). See Section 4.3 for details.
4-30

500-006016-000
4.4.5 Channel Startup

After initializing code and interrupt service routines, the host may start
VMIVME-6016 automatic operation by setting the bit in the GO register that
corresponds to the channel to be started. The VMIVME-6016 automatically initializes
the CST register for any channel when that channel is started.

Once one or more channels are active, others can be started or stopped
without interfering with active channels provided that none of the global registers
needs to be modified (other than the GST register).

4.4.6 Channel Operation

If the user buffers are ring buffers, "full" means that the buffer input pointer
is one behind the output pointer, and "empty" means that the pointers are equal.

After the GO register bit for a channel is set, the channel begins to receive
data and store it in the user receive buffer. The VMIVME-6016 notifies the host that
the user buffer has data available by setting a channel status bit and possibly
interrupting the host. The host, after taking the data, advances the receive ring buffer
output pointer or resets the character count in the receive linear buffer, and tells the
VMIVME-6016 to resume storing into the user receive buffer by setting the appropriate
bit in the RX register. Note that the host must set the RX bit to tell the VMIVME-6016
to load the receive user buffer the first time. The VMIVME-6016 will reset the RX bit,
set URCV_RDY, and possibly interrupt the host when either an EOB character arrives
or input timeout occurs. If either the user receive buffer fills up or the hardware FIFO
in the UART overflows, the VMIVME-6016 will sets OVERRUN in the CST register for
the channel, and will possibly interrupt the host. If the VMIVME-6016 is in slave mode
and the user buffers are ring buffers, there is no internal ring buffer, so the host does
not need to tell the VMIVME-6016 to transfer data to the user buffer; here the RX bit
is meaningless.

After the host loads data to be transmitted into the user transmit buffer, and
advances the transmit ring buffer input pointer or sets the character count into the
transmit linear buffer, it tells the VMIVME-6016 to take the data and begin transmitting
it by setting the appropriate bit in the TX register. It notifies the host that the data is all
accepted (transmit buffer available for new data) by setting a channel status bit and
possibly interrupting the host. The VMIVME-6016 also automatically resets the TX
register bit when it shuts down the transmitter for lack of data to transmit. If the
VMIVME-6016 is in slave mode and the user buffers are ring buffers, there is no
internal ring buffer. In this case, the host may insert new data into the user ring buffer
while the VMIVME-6016 is transmitting, and the new data will be transmitted. If this is
done, the host UTX_RDY interrupt service should check the transmit buffer for data,
and take steps to be sure it gets sent out; the VMIVME-6016 may have stopped
transmitting just as the new data was given to it.
4-31

500-006016-000
4.4.7 Restarting After an Error Interrupt

Interrupts from a channel (CH_MSK and CH_VEC) do NOT stop activity,
but, as noted above, a global error interrupt WILL stop ALL channel activity. (The
REGBUSY_MSK interrupt, although global, is not an error and so does not stop
channel activity.) In the latter case, the host must restart ALL the channels that should
be active. Incoming characters may be lost as a result of a global error interrupt and
without receiving overrun errors.

4.4.8 Performance Considerations

The registers and on-board buffers reside in memory used by the on-board
CPU for code, stack space, local variables, internal ring buffers, and so on. When the
host accesses the registers or on-board buffers, the on-board CPU has to wait for such
accesses to complete. This loss of time negatively impacts performance. Therefore,
accesses by the host should be restricted to the essentials. For example, the host
should not poll status; it should instead make use of interrupts, and examine status
when they occur. It also helps to transfer a number of characters to or from the buffers
and update pointers or counters after the transfer, rather than updating pointers on a
character-by-character basis.

4.4.9 Usage Notes on VMIVME-6016 Registers

The VMIVME-6016’s registers are actually on-board memory locations that
are shared by the VMIVME-6016’s processor and the VMEbus. Because of this
arrangement, some of the VMIVME-6016’s registers should only be modified using an
indivisible VMEbus read modify write instruction. The registers that have the indivisible
RMW requirement are: CR0, GO, TX, RX, and CST registers for each channel. For
CR0, the requirement for indivisible RMWs can be bypassed if the following cautions
are observed:

1) If you set the TXBRK bit, do not modify CR0 until the VMIVME-6016
clears the TXBRK bit.

2) If you set the SLFTST bit, do not modify CR0 until the VMIVME-6016
clears the SLFTST bit.

The need to use RMW cycles for accessing the GO, TX, RX, and CST
registers can be seen by looking at the TX register. This register has 16 bits, one for
each channel. To begin a transmit on a channel or channels, the user sets the
appropriate bits. If the user then wants to do a transmit on some other channel, the
user must read the TX register and OR it with a mask for the additional channels. The
result is then written back to the VMIVME-6016’s TX register. Note: When the
VMIVME-6016 has completed a TX for a particular channel, it clears the
corresponding bit in the TX register. The RMW requirement stems from the following
sequence of events:
4-32

500-006016-000
1) User writes TX channel setting bits 0, 1, and 2.

2) The VMIVME-6016’s on-board CPU starts a transmit on channels 0, 1,
and 2.

3) User software reads $0007 from the TX register and stores it in a
variable, say TX_REG.

4) Meanwhile, the VMIVME-6016 firmware completes the transmit on
channel 2, and clears bit 2 of the TX register. TX register now equals
$0003.

5) User software sets bit 3 of TX_REG. TX_REG now equals $000F (it
needs to be $000B to avoid a false start on channel 2). User then writes
TX_REG to the VMIVME-6016’s TX register. By doing so, the user
inadvertently starts another transmit on channel 2.

For the example given above, the false start on channel 2 can be avoided
by removing step 5 and using an indivisible RMW operation in step 3 that sets bit 3 of
the TX register. The Global Status Register (GST) can be treated as two separate
registers: high byte and low byte. It is recommended that the upper byte of the GST
register be modified using indivisible RMW operations. The low byte does not need
indivisible RMWs since REGBUSY is the only bit defined in the low byte.
4-33

500-006016-000

A

A

A

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

D

D

E

E

E

E

E

F

F

1/2
Table 4.4.1-1. VMIVME-6016 Register and Field Symbols

Glob/Chan Size+Offset

-or-

Symbol Reg. Symbol Bitmask Description

DDRMOD SZ_AM 3F VMEbus Address Modifier

NYERR GST 8000 Any Error (OR of bits marked ERROR)

RBMOD CR1 08 SCON VMEbus Arbiter mode: 1=Priority 0=RR

AUD CH_CON1 1F Baud rate for both TX and RX

ERR GST 0100 BERR on VMEbus master cycle (ERROR)

ERR_MSK ER_MSK 08 VMEbus BERR mask

ERR_TO CR1 07 VMEbus BERR timeout if SCON

RD_ID (glob) Byte+00 Board ID

REAK (glob) Word+0C “BREAK”, ch[15..0]=BREAK[15..0]

REAK_MSK CH_MSK 20 BREAK received

RK_DUR (chan) Byte+07 BREAK duration in ms +0/-1

RK_RCVD CST 0080 BREAK received

RLEVEL CR2 C0 VMEbus Bus Request Level to use

UFBASE (glob) Long+14 Base of buffers (M) or board (S)

H_CON1 (chan) Byte+0B Channel Control Byte 1

H_CON2 (chan) Byte+0C Channel Control Byte 2

H_LEVEL CH_MSK 07 Channel Interrupt Level

H_MSK (chan) Byte+02 Channel Interrupt Mask

H_VEC (chan) Byte+03 Channel Interrupt Vector

OS_MSK CH_MSK 80 CTS or DCD changed state

R0 (glob) Byte+04 Command Register 0

R1 (glob) Byte+05 Command Register 1

R2 (glob) Byte+0E Command Register 2

ST (chan) Word+00 Channel Status

TS CST 1000 CTS state

TS_COS CST 4000 CTS (Clear-To-Send) changed state

CD CST 2000 DCD state

CD_COS CST 8000 DCD (Data-Carrier-Detect) changed state

OB (chan) Byte+04 End-of-block code

RR_MSK CH_MSK 40 FE, PE, OVERRUN, or illegal code

R_LEVEL ER_MSK 07 VMEbus level code

R_MSK (glob) Byte+12 Error interrupt control

R_VEC (glob) Byte+13 Error interrupt vector

AIR_TO CR2 0F Fairness control and timeout

E CST 0040 Framing Error

M6016/T4.4.1-
4-34

500-006016-000

F

F

G

G

H

H

H

I

I

L

L

M

M

O

O

P

P

P

R

R

R

R

R

R

R

R

R

R

S

S

S

S

S

S

S

S

S

1/3
FUL CST 0002 Receiver FIFO full

LOWCON CH_CON1 60 Flow control

O (glob) Word+06 "GO" bits, ch[15..0] = GO[15..0]

ST (glob) Word+18 Global Status register

DWEERR GST 0200 6016 hardware error (ERROR)

DWE_ERR_MSK ER_MSK 10 Hardware Error mask

I_RING (chan) Byte+0A Internal Ring high water mark

LL CST 0400 Illegal BAUD or PAR_TYP, or other param

NP_TIMEOUT CH_CON2 80 Input Timeout Control

EDN CR0 01 1=LED off, 0=LED on

O_RING (chan) Byte+09 Internal Ring low water mark

ASTER CR0 80 1=Master (buffers off-board), 0=Slave mode

AS_GRN (glob) Byte+1A Master Granularity

PTIONS (glob) Word+02 ROM version code and hardware options

VERRUN CST 0010 Receiver Overrun

AR_ODD CH_CON2 04 Parity: 1=odd 0=even

AR_TYP CH_CON2 18 Transmit/Receive Parity Type

E CST 0020 Parity Error

CV_MSK CH_MSK 10 User receive buffer has data

EGBUSY GST 0080 Write-to-register process busy

EGBSY GST 80 bit MASIL for lower byte of GST

EGBUSY_MSK ER_MSK 80 Register Busy Transition to Zero

ELMOD CR2 30 VMEbus Release Mode

FNZ GST 0800 Reserved Field set nonzero (ERROR)

FNZ_MSK ER_MSK 40 Reserved-filed-nonzero mask

ST_BRD CR0 02 1=reset entire board, 0=normal (run)

X (glob) Word+0A “RX” bits, ch[15..0] = RX[15..0]

XRDY CST 0001 Receiver Ready (has a character)

CON GST 1000 1 = SCON jumper is installed (slot 1)

LFTST CR0 04 1=self-test, 0=normal

LV_32 CR0 20 1=slave is A32, 0=slave is A24

LV_OK CR0 40 1=A24/A32 slave decode OK

TBUSY GST 2000 Self-Test function busy

TFAIL GST 0400 6016 self-test error (ERROR)

TFLAG (glob) Byte+01 Self-Test flag in ID register

T_FAIL_MSK ER_MSK 20 Self-Test error mask

T_PROC (glob) Byte+11 Self-Test procedure register

Table 4.4.1-1. VMIVME-6016 Register and Field Symbols (Continued)

Glob/Chan Size+Offset

-or-

Symbol Reg. Symbol Bitmask Description

M6016/T4.4.1-
4-35

500-006016-000

S

S

S

S

S

T

T

T

T

T

T

T

T

T

T

T

T

U

U

U

V

V

V

V

X

X

1/3
UPONLY CR0 10 1=slave is SUP only, 0=slave is SUP and NP

Z_AM (glob) Byte+10 Master's size and AM

Z_CHAR CH_CON2 03 Bits/char not including parity bit

Z_RING (chan) Byte+08 Internal Ring size

Z_UBUF (chan) Byte+0D User Buffer Size

EST_BERR ST_PROC 08 Self-access BERR test

EST_DMA_R ST_PROC 20 VMEbus DMA read (bus --> board) test

EST_DMA_W ST_PROC 10 VMEbus DMA write (board --> bus) test

EST_TIMER ST_PROC 02 Timer test

EST_UART ST_PROC 04 UART test (local loopback)

EST_VINT ST_PROC 01 VMEbus interrupt test

WO_STOP CH_CON2 20 Transmit stop bits: NZ=2, Z=1

X (glob) Word+08 “TX” bits, ch[15..0] = TX[15..0]

XBRK CR0 08 1=Send BREAK signals, as marked in BREAK

XEMT CST 0008 Transmitter Empty

XRDY CST 0004 Transmitter Ready (but maybe not empty)

X_MSK CH_MSK 08 User transmit buffer needs data

B_RING CH_CON1 80 User Buffer type: 1=ring 0=linear

RCV_RDY CST 0200 User receive buffer has data

TX_RDY CST 0100 User transmit buffer can take data

MESIZE SZ_AM C0 VMEbus size, 00 = L, 01 = B, 10 = W

ME_SIZE_16 SZ_AM 80 16-bit size as VMEbus master

ME_SIZE_32 SZ_AM 00 32-bit size as VMEbus master

ME_SIZE_8 SZ_AM 40 8-bit size as VMEbus master

OFF (chan) Byte+05 Flow control XOFF code

ON (chan) Byte+06 Flow control XON code

Table 4.4.1-1. VMIVME-6016 Register and Field Symbols (Continued)

Glob/Chan Size+Offset

-or-

Symbol Reg. Symbol Bitmask Description

M6016/T4.4.1-
4-36

500-006016-000
4.5 GENERAL PROGRAMMING EXAMPLES

Here is a simple example of how to use the VMIVME-6016. This program
makes channel 1 echo incoming characters to its output, line by line, assuming each
line ends with a carriage return ($0D). The header file is shown in Section 4.7.

/* File: 6016tst1.c
 * Description: Echo input to output on one 6016 channel
 * Revision: XO
 * Date: 21 July 94
 * Where used: Force-33 CPU and memory in chassis with a VMIVME-6016
 * Property of: VMIC (VME Microsystems International Inc.)
 */

#define CHANNEL 1 /* 6016 channel to use */
#define BASE_AD 0x6000 /* Short I/O register base */
#define BUF_AD 0x40000 /* Standard (A24) buffer memory base */
#define UBUF_SZ 128 /* User ring size (multiple of 128) */
#define ERVEC 0x81 /* Vector for global error interrupts */
#define ERLEV 4 /* Level for global error interrupts */
#define CHVEC 0x80 /* Vector for channel interrupts */
#define CHLEV 3 /* Level for channel interrupts */

#include <stdio.h>

typedef unsigned long Long;
typedef unsigned short Word;
typedef unsigned char Byte;
#define VME_SHORT_IO 0xFBFF0000
#define VME_STANDARD 0xFB000000

#include "6016hdwe.h" /* User register definitions */
#include “setclr.h” /* Header definition for 680x0 RMW instructions*/

void setvec(Long, void (*) (void));
void abort(void);
void err_isr(void);
void chn_isr(void);

Word channel;
Word ubuf_sz;
Byte *regbase;
Byte *chnbase;
Word rxflag;
Word txflag;
Word * txi_index_ptr;
Word * txo_index_ptr;
Word * rxi_index_ptr;
Word * rxo_index_ptr;
Byte * rx_ring;
Byte * tx_ring;
4-37

500-006016-000
4-38

void
main()
{

/* Set up base addresses for global registers and CCB */
channel = CHANNEL;
ubuf_sz = UBUF_SZ - 4;
regbase = (Byte *)(VME_SHORT_IO | BASE_AD); /* Assume a 6016 here */
chnbase = regbase + GREG_SIZE + CREG_SIZE * channel;

/* Set up pointers to ring buffers and indexes */
tx_ring = (Byte *)(VME_STANDARD + BUF_AD + channel * 0x2000);
rx_ring = tx_ring + 0x1000;
txi_index_ptr = (Word *)tx_ring;
txo_index_ptr = txi_index_ptr + 1;
rxi_index_ptr = (Word *)rx_ring;
rxo_index_ptr = rxi_index_ptr + 1;

/* Attach the interrupt service routines */
setvec((Long)ERVEC, err_isr); /* Point to error handler */
setvec((Long)CHVEC, chn_isr); /* Point to channel handler */

/* Make sure we are shut down */
rxflag = 0; /* Initialize interrupt flags */
txflag = 1;
GSTLO |= REGBSY; /* Preset registers busy */
GO = 0; /* Make sure it's dead */
while (GSTLO & REGBSY); /* Wait for death */

/* Global setup */
GST = 0; /* Clean out global status */
ER_VEC = ERVEC; /* Vector for global errors */
ER_MSK = RFNZ_MSK | HDWE_ERR_MSK | ERLEV; /* Level ERLEV, two reasons */
BREAK = 0;
ST_PROC = 0; /* No self tests */
BUFBASE = VME_STANDARD | BUF_AD; /* User buffers */
GSTLO |= REGBSY; /* Preset registers busy */
CR0 = SLV_OK | LEDN; /* Present user buffers, LED off */
while (GSTLO & REGBSY); /* Wait for registers not busy */

/* Channel setup */
CH_VEC = CHVEC; /* Vector for channel interrupts */
CH_MSK = RCV_MSK | TX_MSK | CHLEV; /* Level CHLEV, xmit done or rcv rdy */
CST = 0; /* Clean out channel status */
EOB = 0x0D; /* EOB is a carriage return */
XOFF = 0x13; /* XOFF is a cntl-S */
XON = 0x11; /* XON is a cntl-Q */
BRK_DUR = 8; /* Eight millisecond BREAK */
 SZ_RING = 1; /* Smallest internal ring */
LO_RING = 32; /* Low water is 32 chars */
HI_RING = 32; /* High water is 32 chars */
CH_CON1 = UB_RING | 0x20 | 0x0B; /* User ring, XOFF/XON, 9600 bits/sec */
CH_CON2 = 0x10 | 0x03; /* 1 stop bit, no parity, 8 bits/char */
SZ_UBUF = (ubuf_sz + 4) / 128; /* Set size of user ring */
/* Enable the channel */
GSTLO |= REGBSY; /* Preset registers busy */
GO |= (1 << channel); /* Turn on the channel */

/* If using more than 1 channel, modify
GO REG using indivisible RMW
instructions*/

while (GSTLO & REGBSY); /* Wait for registers not busy */

500-006016-000
/* Copy input to output indefinitely, a "line" at a time */
while (1) {

/* Wait for input */
while (!rxflag); /* Wait for EOB input */
rxflag = 0;

/* Move the input to the output */
while (*rxo_index_ptr != *rxi_index_ptr) {

*(tx_ring + *txi_index_ptr + 4L) = *(rx_ring + *rxo_index_ptr + 4L);
if (*rxo_index_ptr >= ubuf_sz)

*rxo_index_ptr = 0;
else

++*rxo_index_ptr;
if (*txi_index_ptr >= ubuf_sz)

*txi_index_ptr = 0;
else

++*txi_index_ptr;
}

/* Wait for any previous transmit request to run down, just for fun */
while (!txflag); /* Wait for transmit ring empty */
txflag = 0;

/* Request transmission */
GSTLO |= REGBSY; /* Preset registers busy */
TX |= (1 << channel); /* Turn on the transmitter */

/* If using more than 1 channel,
modify TX register using indivisible
RMW instructions*/

while (GSTLO & REGBSY); /* Wait for registers not busy */
}

}

void
setvec(Long vecno, void (*israddr)(void))
{

asm(" move.l 8(a6),d0 get interrupt vector# ");
asm(" move.l 12(a6),a0 get pointer to handler ");
asm(" dc.w $a116 vmeprom call: xvec ");

}

#pragma interrupt()

void
err_isr()
{

printf("Error interrupt, GST = %04X\n", GST);
abort();

}
#pragma interrupt()

void
chn_isr()
{

if (CST & URCV_RDY) {
4-39

500-006016-000
rxflag = 1;
CLRBITW (CST, URCV_RDY); /* Use indivisible RMW instruction to

CLR URCV_RDY*/
}
if (CST & UTX_RDY) {

txflag = 1;
CLRBITW (CST, UTX_RDY); /* Use indivisible RMW instruction to

CLR UTX_RDY*/
}

}

4.6 RUNNING SELF-TESTS FROM THE HOST

The VMIVME-6016 can perform several diagnostic tests on parts of its
hardware. The host CPU must set up each test and command it to run. The CPU uses
the Self-Test (SLFTST) bit in the CR0 register, and the STPROC register to control the
self-tests. The first two steps in running a self-test are the same for each test; they are
shown as a and b below. From that point, the tests differ. After starting a test, the host
CPU should wait for either SLFTST or STBUSY to go to zero as the indication that the
test has finished. After a test has completed, the STFAIL bit in GST indicates success
or failure. Some of the tests may return a code in CST[0] (the CST register for channel
zero) on failure.

a. Make sure the GO and BREAK registers are all zeros.
b. Set the desired test in the STPROC register.
TEST_DMA_R: VMEbus DMA read (bus --> board) test

Load source pointer in BUFBASE
Set SZ_AM
Set byte count in BREAK (multiple of 4)
Set SLFTST
 (BREAK, if nonzero, is the residual byte count)

TEST_DMA_W: VMEbus DMA write (board --> bus) test
Load destination pointer in BUFBASE
Set SZ_AM
Set byte count in BREAK (multiple of 4)
Set SLFTST
 (BREAK, if nonzero, is the residual byte count)

TEST_BERR: Self-access BERR test
Set base address of board in BUFBASE
Set SZ_AM
Set SLFTST
 (BUFBASE contains longword read if did not BERR)

TEST_UART: UART port test (local loopback)
Set SLFTST

TEST_TIMER: Timer interrupt test
Set SLFTST
 (Wait about 5 milliseconds before testing SLFTST)

TEST_VINT: VMEbus interrupt test
Set vector in ER_VEC
Set level (1-7) in ER_MSK[ERLEVEL], other bits zeros
Set SLFTST (causes the VMEbus interrupt)
 (VMIVME-6016 waits at most 10 milliseconds)
4-40

500-006016-000
4.7 SAMPLE HEADER FILE

/* File: 6016hdwe.h
 * Description: VMIVME-6016 register definitions
 * Revision: XO
 * Date: 21 Jul 94
 * Where used: Force-33 CPU test code for, and firmware for VMIVME-6016
 * Property of: VMIC (VME Microsystems International Inc.)
 */

/*
 * The Global "registers" as based lvalues.
 * These take up thirty-two bytes, at the beginning of the
 * 256 bytes of A16 (short I/O) memory.
 */

#define GREG_SIZE 0x20 /* Room for global registers */

Table 4.6-1. CST[0] Register Self-Test Failure Codes

Mnemonic Value Reason for Failure

DMA_GET_ERR 1 TEST_DMA data read error

DMA_PUT_ERR 2 TEST_DMA data write error

BERR_NO_BERR 3 TEST_BERR did not BERR

TIMER_FAST 4 TEST_TIMER: timer speed high

TIMER_SLOW 5 TEST_TIMER: timer speed low

VINT_TIMEOUT 6 TEST_VINT timed out

VINT_ILLEGAL 7 TEST_VINT improperly set up

BERR_TIMEOUT 8
TEST_BERR timed out without
self-access

UART_BAD 1X TEST_UART channel X bad

TEST_UNDEFINED 255 Undefined test bit in STPROC

Table 4.6-2. Test Bits in STPROC Register

Code Bit Description

TEST_DMA_R Bit 5 VMEbus DMA read (bus --> board) test

TEST_DMA_W Bit 4 VMEbus DMA write (board --> bus) test

TEST_BERR Bit 3 Self-access BERR test

TEST_UART Bit 2 UART test (local loopback)

TEST_TIMER Bit 1 Timer test

TEST_VINT Bit 0 VMEbus interrupt test

M6016/T4.6-1

M6016/T4.6-2
4-41

500-006016-000
#define BRD_ID *(Byte *)(regbase+0x00) /* Board ID */
#define STFLAG *(Byte *)(regbase+0x01) /* Self test flag in ID register */
#define OPTIONS *(Word *)(regbase+0x02) /* ROM version code and hdwe options
*/
#define CR0 *(Byte *)(regbase+0x04) /* Command register 0 */
#define CR1 *(Byte *)(regbase+0x05) /* Command register 1 */
#define GO *(Word *)(regbase+0x06) /* "GO" bits, ch[15..0] = GO[15..0] */
#define TX *(Word *)(regbase+0x08) /* "TX" bits, ch[15..0] = TX[15..0] */
#define RX *(Word *)(regbase+0x0A) /* "RX" bits, ch[15..0] = RX[15..0] */
#define BREAK *(Word *)(regbase+0x0C) /* "BREAK", ch[15..0] = BREAK[15..0]
*/
#define CR2 *(Byte *)(regbase+0x0E) /* Command register 2 */

/* 0F reserved, must be zero */
#define SZ_AM *(Byte *)(regbase+0x10) /* Master's size and AM */
#define ST_PROC *(Byte *)(regbase+0x11) /* Selftest procedure register */
#define ER_MSK *(Byte *)(regbase+0x12) /* Error interrupt control */
#define ER_VEC *(Byte *)(regbase+0x13) /* Error interrupt vector */
#define BUFBASE *(Long *)(regbase+0x14) /* Base of buffers (M) or board (S)
*/
#define GST *(Word *)(regbase+0x18) /* Global Status register */
#define MAS_GRN *(Byte *)(regbase+0x1A) /* Master Granularity */

/* 1B .. 1F reserved, must be zero */

#define GSTLO *(Byte*)(regbase+0x19) /* Lower byte of GST Register*/

/* CR0 bits */
#define MASTER 0x80 /* 1=Master (buffers off-board), 0=Slave mode */
#define SLV_OK 0x40 /* 1=A24/A32 slave decode OK */
#define SLV_32 0x20 /* 1=slave is A32, 0=slave is A24 */
#define SUPONLY 0x10 /* 1=slave is SUP only, 0=slave is SUP and NP */
#define TXBRK 0x08 /* 1=Send BREAK signals, as marked in BREAK */
#define SLFTST 0x04 /* 1=selftest, 0=normal */
#define RST_BRD 0x02 /* 1=reset entire board, 0=normal (run) */
#define LEDN 0x01 /* 1=LED off, 0=LED on */

/* CR1 bits */
#define ARBMOD 0x08 /* SCON VMEbus Arbiter mode: 1=Priority 0=RR */
#define BERR_TO 0x07 /* VMEbus BERR timeout if SCON */

/* CR2 bits */
#define BRLEVEL 0xC0 /* VMEbus Bus Request Level to use */
#define RELMOD 0x30 /* VMEbus Release Mode */
#define RELROR 0x00 /* Release on Request */
#define RELRWD 0x10 /* Release when Done */
#define RELROC 0x20 /* Release on BCLR* */
#define RELBCAP 0x30 /* Bus capture and hold */
#define FAIR_TO 0x0F /* Fairness control and timeout */

/* SZ_AM: Master's size and AM bits */
#define VMESIZE 0xC0 /* VMEbus size, 00 = L, 01 = B, 10 = W */
#define VME_SIZE_32 0x00 /* 32-bit size as VMEbus master */
#define VME_SIZE_16 0x80 /* 16-bit size as VMEbus master */
#define VME_SIZE_8 0x40 /* 8-bit size as VMEbus master */
#define ADDRMOD 0x3F /* VMEbus Address Modifier */
4-42

500-006016-000
/* ST_PROC: Selftest procedure bits */
#define TEST_DMA_R 0x20 /* VMEbus DMA read (bus --> board) test */
#define TEST_DMA_W 0x10 /* VMEbus DMA write (board --> bus) test */
#define TEST_BERR 0x08 /* Self-access BERR test */
#define TEST_UART 0x04 /* UART test (local loopback) */
#define TEST_TIMER 0x02 /* Timer test */
#define TEST_VINT 0x01 /* VMEbus interrupt test */

/* ER_MSK: Error interrupt control register */
#define REGBUSY_MSK 0x80 /* Write-to-register handled mask */
#define RFNZ_MSK 0x40 /* Reserved-field-non-zero mask */
#define ST_FAIL_MSK 0x20 /* Selftest error mask */
#define HDWE_ERR_MSK 0x10 /* Hardware Error mask */
#define BERR_MSK 0x08 /* VMEbus BERR mask */
#define ER_LEVEL 0x07 /* VMEbus level code */

/* GST (Board Status) bits */
#define ANYERR 0x8000 /* Any Error (OR of bits marked ERROR) */
#define GLBILL 0x4000 /* Illegal content in a global register */
#define STBUSY 0x2000 /* Self test function busy */
#define SCON 0x1000 /* 1 = SCON jumper is installed (slot 1) */
#define RFNZ 0x0800 /* Reserved Field set non-zero (ERROR) */
#define STFAIL 0x0400 /* 6016 selftest error (ERROR) */
#define HDWEERR 0x0200 /* 6016 hardware error (ERROR) */
#define BERR 0x0100 /* BERR on VMEbus master cycle (ERROR) */
#define REGBUSY 0x0080 /* Write-to-register process busy */
#define REGBSY 0x80 /* BUSY MASK for low byte of GST Register*/

/*
 * The Channel Control Block "registers" as offsets from an A register.
 * There are sixteen sets of these, each using fourteen bytes. They
 * immediately follow the Global "registers", exactly using up
 * all 256 bytes of A16 (short I/O) memory.
 */

#define CREG_SIZE 0x0E /* Room for one CCB */
#define CST *(Word *)(chnbase+0x00) /* Channel Status */
#define CH_MSK *(Byte *)(chnbase+0x02) /* Channel Interrupt Mask */
#define CH_VEC *(Byte *)(chnbase+0x03) /* Channel Interrupt Vector */
#define EOB *(Byte *)(chnbase+0x04) /* End-of-block code */
#define XOFF *(Byte *)(chnbase+0x05) /* Flow control XOFF code */
#define XON *(Byte *)(chnbase+0x06) /* Flow control XON code */
#define BRK_DUR *(Byte *)(chnbase+0x07) /* BREAK duration in ms +0/-1 */
#define SZ_RING *(Byte *)(chnbase+0x08) /* Internal Ring size */
#define LO_RING *(Byte *)(chnbase+0x09) /* Internal Ring low water mark */
#define HI_RING *(Byte *)(chnbase+0x0A) /* Internal Ring high water mark */
#define CH_CON1 *(Byte *)(chnbase+0x0B) /* Channel Control Byte 1 */
#define CH_CON2 *(Byte *)(chnbase+0x0C) /* Channel Control Byte 2 */
#define SZ_UBUF *(Byte *)(chnbase+0x0D) /* User Buffer Size */

/* CST bits */
#define DCD_COS 0x8000 /* DCD (Data-Carrier-Detect) changed state */
#define CTS_COS 0x4000 /* CTS (Clear-To-Send) changed state */
#define DCD 0x2000 /* DCD state */
4-43

500-006016-000
#define CTS 0x1000 /* CTS state */
#define INTBSY 0x0800 /* Host’s interrupt routine busy */
#define ILL 0x0400 /* Illegal BAUD or PAR_TYP, or other param */
#define URCV_RDY 0x0200 /* User receive buffer has data */
#define UTX_RDY 0x0100 /* User transmit buffer can take data */
#define BRK_RCVD 0x0080 /* BREAK received */
#define FE 0x0040 /* Framing Error */
#define PE 0x0020 /* Parity Error */
#define OVERRUN 0x0010 /* Receiver Overrun */
#define TXEMT 0x0008 /* Transmitter Empty */
#define TXRDY 0x0004 /* Transmitter Ready (but maybe not empty) */
#define FFUL 0x0002 /* Receiver FIFO full */
#define RXRDY 0x0001 /* Receiver Ready (has a character) */

/* CH_MSK bits */
#define COS_MSK 0x80 /* CTS or DCD changed state */
#define ERR_MSK 0x40 /* FE, PE, OVERRUN, or illegal code */
#define BREAK_MSK 0x20 /* BREAK received */
#define RCV_MSK 0x10 /* User receive buffer has data */
#define TX_MSK 0x08 /* User transmit buffer needs data */
#define CH_LEVEL 0x07 /* Channel Interrupt Level */

/* CH_CON1 bits */
#define UB_RING 0x80 /* User Buffer type: 1=ring 0=linear */
#define FLOWCON 0x60 /* Flow control: */

/* 00: None */
/* 01: XON/XOFF */
/* 02: Any/XOFF */
/* 03: RTS/CTS and DCD */

#define BAUD 0x1F /* Baud rate for both TX and RX: */
/* 00000: 50 10000: 75 */
/* 00001: 110 10001: 110 */
/* 00010: 134.5 10010: 38.4K */
/* 00011: 200 10011: 150 */
/* 00100: 300 10100: 300 */
/* 00101: 600 10101: 600 */
/* 00110: 1200 10110: 1200 */
/* 00111: 1050 10111: 2000 */
/* 01000: 2400 11000: 2400 */
/* 01001: 4800 11001: 4800 */
/* 01010: 7200 11010: 1800 */
/* 01011: 9600 11011: 9600 */
/* 01100: 38.4K 11100: 19.2K */

/* CH_CON2 bits */
#define INP_TIMEOUT 0xC0 /* Input timeout control */
#define INP_T_NONE 0x00 /* 00 : none */
#define INP_T_3CH 0x40 /* 01 : 3 char times or break */

/* duration, whichever is > */
#define INP_T_HALFSEC 0x80 /* 10: 1/2 second */
#define INP_T_SEC 0xC0 /* 11: 1 second */
#define TWO_STOP 0x20 /* Transmit stop bits: NZ=2, Z=1 */
#define PAR_TYP 0x18 /* Transmit/Receive Parity Type: */

/* 00: Odd or Even, use PAR_ODD */
4-44

500-006016-000
/* 01: Force to PAR_ODD state */
/* 10: No parity bit */

#define PAR_ODD 0x04 /* Parity: 1=odd 0=even */
#define SZ_CHAR 0x03 /* Bits/char not including parity bit: */

/* 00: 5 */
/* 01: 6 */
/* 10: 7 */
/* 11: 8 */

/* End of 6016hdwe.h */

4.7.1 Sample Header File for Indivisible RMWs

/* File: setclr.h
 * Description: SET and CLR macros using CAS instructions
 * Revision: XO
 * Date: 06 Sep 95
 * Where used: VMIVME-6016 CrossCode-C Test Code running on Force 33
 * Property of: VMIC (VME Microsystems International Corporation)
 *
 *
 * Revision history:
 * 06 Sep 95 Initial
 */

/* Set bits in 16-bit shared memory reg using RMC */
#define SETBITW(reg, bits) set_bw(&(reg), bits)

/* Set bits in 8-bit shared memory reg using RMC */
#define SETBITB(reg, bits) set_bb(&(reg), bits)

/* Clear bits in 16-bit shared memory reg using RMC */
#define CLRBITW(reg, bits) clr_bw(&(reg), bits)

/* Clear bits in 8-bit shared memory reg using RMC */
#define CLRBITB(reg, bits) clr_bb(&(reg), bits)

void set_bw(Word * reg, int bits);
void set_bb(Byte * reg, int bits);
void clr_bw(Word * reg, int bits);
void clr_bb(Byte * reg, int bits);
4-45

500-006016-000
4.7.2 Assembler Source File for 680x0 RMW Instructions

; File: setclr.s
; Description: SET and CLR routines using CAS instructions
; Revision: XO
; Date: 07 Sep 95
; Where used: VMIVME-6016 CrossCode-C Test Code running on Force 33
; Property of: VMIC (VME Microsystems International Corporation)
;
;
; Revision history:
; 07 Sep 95 Initial
;
; Set bits in 16-bit shared memory reg using RMC
; void set_bw(Word * reg, int bits);
;

.OPTION target=68020/68881,flags=gG
;

xdef _set_bw
xdef _set_bb
xdef _clr_bw
xdef _clr_bb

;
section code

;
_set_bw: ; SETBITW

move.1 d2,-(sp) ; Save a register
move.1 8(sp),a0 ; ® -> A0
move.1 12(sp),d2 ; Bits to set -> D2
move.w (a0),d0 ; Old reg contents -> D0
move.w d2,d1 ; CAS loop: Copy bits -> D1
or.w d0,d1 ; OR in the old contents
cas.w d0,d1, (a0) ; Try to set bits in reg
bne.s *-8 ; Keep trying until it works
move.1 (sp)+,d2 ; Restore the saved register
rts ; Return to caller

;
_set_bb: ; SETBITW

move.1 d2,-(sp) ; Save a register
move.1 8(sp),a0 ; ® -> A0
move.1 12(sp),d2 ; Bits to set -> D2
move.b (a0),d0 ; Old reg contents -> D0
move.b d2,d1 ; CAS loop: Copy bits -> D1
or.w d0,d1 ; OR in the old contents
cas.b d0,d1, (a0) ; Try to set bits in reg
bne.s *-8 ; Keep trying until it works
move.1 (sp)+,d2 ; Restore the saved register
rts ; Return to caller

;
_clr_bw: ; CLRBITW

move.1 d2,-(sp) ; Save a register
move.1 8(sp),a0 ; ® -> A0
move.1 12(sp),d2 ; Bits to clear -> D2
not.w d2 ; Invert bits for mask
move.w (a0),d0 ; Old reg contents -> D0
move.w d2,d1 ; CAS loop: Copy bits -> D1
and.w d0,d1 ; Mask in the old contents
cas.w d0,d1, (a0) ; Try to set bits in reg
4-46

500-006016-000
bne.s *-8 ; Keep trying until it works
move.1 (sp)+,d2 ; Restore the saved register
rts ; Return to caller

;
_clr_bb: ; CLRBITB

move.1 d2,-(sp) ; Save a register
move.1 8(sp),a0 ; ® -> A0
move.1 12(sp),d2 ; Bits to clear -> D2
not.b d2 ; Invert bits for mask
move.b (a0),d0 ; Old reg contents -> D0
move.b d2,d1 ; CAS loop: Copy bits -> D1
and.b d0,d1 ; Mask in the old contents
cas.b d0,d1, (a0) ; Try to set bits in reg
bne.s *-8 ; Keep trying until it works
move.1 (sp)+,d2 ; Restore the saved register
rts ; Return to caller

;

4-47

500-006016-000
SECTION 5

CONFIGURATION AND INSTALLATION

5.1 UNPACKING PROCEDURES

SOME OF THE COMPONENTS ASSEMBLED ON VMIC'S PRODUCTS MAY BE SENSITIVE TO
ELECTROSTATIC DISCHARGE AND DAMAGE MAY OCCUR ON BOARDS THAT ARE
SUBJECTED TO A HIGH ENERGY ELECTROSTATIC FIELD. WHEN THE BOARD IS PLACED ON
A BENCH FOR CONFIGURING, ETC., IT IS SUGGESTED THAT CONDUCTIVE MATERIAL
SHOULD BE INSERTED UNDER THE BOARD TO PROVIDE A CONDUCTIVE SHUNT. UNUSED
BOARDS SHOULD BE STORED IN THE SAME PROTECTIVE BOXES IN WHICH THEY WERE
SHIPPED.

Upon receipt, any precautions found in the shipping container should be
observed. All items should be carefully unpacked and thoroughly inspected for
damage that might have occurred during shipment. The board(s) should be checked
for broken components, damaged printed circuit board(s), heat damage, and other
visible contamination. All claims arising from shipping damage should be filed with the
carrier and a complete report sent to VMIC together with a request for advice
concerning the disposition of the damaged item(s).

5.2 PHYSICAL INSTALLATION

DO NOT INSTALL OR REMOVE THE BOARD WHILE THE POWER IS APPLIED.

De-energize the equipment and insert the board into an appropriate slot of
the chassis. While ensuring that the board is properly aligned and oriented in the
supporting card guides, slide the board smoothly forward against the mating
connector until firmly seated.

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

*

*
*

*

*
*C A U T I O N

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

*

*
*

*

*
*C A U T I O N
5-1

500-006016-000
5.3 JUMPER CONFIGURATIONS

The VMIVME-6016 has several jumper fields that are preconfigured for
certain defaults at the factory but may need to be changed according to the host
system configuration. Figure 5.3-1 on page 5-4 shows the locations of all jumpers on
the VMIVME-6016. Figure 5.3-2 on page 5-5 shows the front panel. Figure 5.3-3 and
Table 5.3-1 on page 5-5 show the pinout for the RJ12 sockets.

5.3.1 VMEbus Address Configuration

The VMIVME-6016 registers occupy 256 bytes of memory and must be
addressed in short I/O (A16) mode. Jumpers A15 through A08 at JP3 determine the
VMEbus address of the VMIVME-6016 registers and Control Blocks. An installed
jumper equals zero (0); an omitted jumper equals one (1).

The factory default configuration has the SUPONLY jumper (pins 17 and 18
of JP3) removed, allowing the board to respond to both supervisory and nonprivileged
accesses. If the SUPONLY jumper is installed, the board responds to only supervisory
accesses.

Figure 5.3.1-1. Base Address and Access Mode Selection

JP3

A
15

A
08

Base Address $0000

Factory Configuration

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

A
09

A
10

A
11

A
12

A
13

A
14

18 20

17 19

S
C

O
N

S
U

P
O

N
LY

JP3

A
15

A
08

Base Address $4C00

Example Configuration

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

A
09

A
10

A
11

A
12

A
13

A
14

18 20

17 19

S
C

O
N

S
U

P
O

N
LY

Both Supervisory and
Nonprivileged Accesses Allowed

Supervisory Accesses Only

*ON = 1; OFF = 0

M6016/F5.3.1-1
5-2

500-006016-000
5.3.2 System Controller Configuration

If the VMIVME-6016 is installed as the system controller in slot 1 of the
chassis, the board must have SCON jumper (pins 19 and 20 of JP3) installed. If the
SCON jumper is installed, the VMIVME-6016 performs the following system controller
functions:

a. Full-function, four-level bus arbiter. The arbitration method used can be
toggled between a round-robin and a prioritized scheme by changing the
Arbiter Mode bit in the CR1 register (see Section 4.2.5).

b. The 16 MHz SYSCLK VMEbus system clock.

c. The SYSRESET* system reset signal.

d. IACK* interrupt acknowledge daisy-chain driver.

e. VMEbus BERR bus error timer. By default, the VMIVME-6016 activates
the BERR* signal when any bus master fails to get a DTACK*
acknowledge signal within 64 microseconds. This bus error time-out can
be changed. See Section 4.2.5.

5.3.3 Hardware Reset

JP1, if momentarily shorted, causes a hard reset just as if power had been
removed and restored. JP1 should normally be left unconnected.

5.3.4 Fixed Jumpers

JP2 is used only during special factory test procedures. JP2 should
normally be left unconnected. JP4 is configured at the factory and must not be
changed.
5-3

500-006016-000
Figure 5.3-1. VMIVME-6016 Jumper Field Locations

P1

P2

JP1

JP2
1 2

9 10
1

2

19
20JP3

JP4

M6016/F5.3-1
5-4

500-006016-000
VMIVME
6016

FAIL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

VMEbus

1

2

3

4

5

6

Figure 5.3-3. RJ12 Socket

Table 5.3-1. RJ12 Socket Pinout

Signal RJ12 Meaning Direction

CTS 1 Clear to Send Input

GND 2 Signal Ground

RXD 3 Receive Data Input

TXD 4 Transmit Data Output

DCD 5 Data Carrier Detect Input

RTS 6 Request to Send Output

Figure 5.3-2. VMIVME-6016 Front Panel

M6016/T5.3-1

M6016/F5.3-2

M6016/F5.3-3
5-5

500-006016-000

6-1

SECTION 6

MAINTENANCE

6.1 MAINTENANCE

This section provides information relative to the care and maintenance of
VMIC's products. If the products malfunction, verify the following:

a. Software
b. System configuration
c. Electrical connections
d. Jumper or configuration options
e. Boards are fully inserted into their proper connector location
f. Connector pins are clean and free from contamination
g. No components of adjacent boards are disturbed when inserting or

removing the board from the chassis
h. Quality of cables and I/O connections

If products must be returned, contact VMIC for a Return Material
Authorization (RMA) Number. This RMA Number must be obtained prior to any
return.

6.2 MAINTENANCE PRINTS

User level repairs are not recommended. The appendix to this manual
contains drawings and diagrams for reference purposes only.

	Headline - VMIVME-6016
	Headline - 16-CHANNEL INTELLIGENT ASYNCHRONOUS SERIAL CONTROLLER (IASC)
	NoticeTitle - Copyright and trademarks
	SafSumTitle - SAFETY SUMMARY
	Warning -
	Warning -
	Warning -
	Warning - THE FOLLOWING GENERAL SAFETY PRECAUTIONS MUST BE OBSERVED DURING ALL PHASES OF THE OPER...
	Warning -
	Warning - DANGEROUS VOLTAGES, CAPABLE OF CAUSING DEATH, ARE PRESENT IN THIS SYSTEM. USE EXTREME C...
	Warning -
	SafSymSubTitle - SAFETY SYMBOLS
	SafSymSubTitle - GENERAL DEFINITIONS OF SAFETY SYMBOLS USED IN THIS MANUAL
	CellBody - A
	CellBody - 02/07/96
	CellBody - 96-0125
	CellBody - B
	CellBody - 02/19/97
	CellBody - 97-0205
	CellBody -
	CellBody -
	CellBody -
	CellBody - C
	CellBody - 05/12/97
	CellBody - 97-0405
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	CellBody -
	SectionTitle - SECTION 1
	SectionSubTitle - INTRODUCTION
	Section - 1.1 INTRODUCTION
	Section - 1.2 FEATURES
	List1 - a. 8 or 16 channels available in one VMEbus slot
	List1 - b. Line parameters independently controlled for each channel by control block in memory:
	List1 - c. RJ12 front panel connectors
	List1 - d. Signal levels RS-232 compatible
	List1 - e. Channel signals: TXD, RXD, RTS, CTS, DCD, GND
	List1 - f. Short I/O-accessed control blocks
	List1 - g. Standard/extended/DMA-accessed user buffers
	List1 - h. Programmable VMEbus address modifiers
	List1 - i. Size-programmable on-board ring buffers
	List1 - j. 128 Kbytes, 256 Kbytes, 512 Kbytes, or 1024 Kbytes total user buffer space
	List1 - k. 68020 processor, 25 MHz or 32 MHz, no-wait-states
	List1 - l. Baud rates: 50 through 38,400 bps, each channel independent
	List1 - m. Programmable interrupt vector and level
	List1 - n. VMEbus compatible
	List1 - o. MA32:MBLT32 as Master, optional MBLT64 with VIC64
	List1 - p. SADO32:SD32 as Slave, optional MBLT with VIC64
	List1 - q. Front panel status indicator
	List1 - r. Programmable slave address for extended/standard buffer locations
	List1 - s. Jumper-selectable slave address for short I/O
	List1 - t. Bus release: ROR, RWD, FAIR, RCLR
	List1 - u. Jumper-enabled system controller functions

	Section - 1.3 REFERENCE MATERIAL LIST

	SectionTitle - SECTION 2
	SectionSubTitle - PHYSICAL DESCRIPTION AND SPECIFICATIONS

	SectionTitle - SECTION 3
	SectionSubTitle - THEORY OF OPERATION
	Section - 3.1 OPERATIONAL OVERVIEW
	Section - 3.2 RS-232 CONNECTIONS
	Table - Table 3.2-1. RJ12 Socket Pinout

	CellBody - CTS
	CellBody - 1
	CellBody - Clear to Send
	CellBody - Input
	CellBody - GND
	CellBody - 2
	CellBody - Signal Ground
	CellBody -
	CellBody - RXD
	CellBody - 3
	CellBody - Receive Data
	CellBody - Input
	CellBody - TXD
	CellBody - 4
	CellBody - Transmit Data
	CellBody - Output
	CellBody - DCD
	CellBody - 5
	CellBody - Data Carrier Detect
	CellBody - Input
	CellBody - RTS
	CellBody - 6
	CellBody - Request to Send
	CellBody - Output
	Section - 3.3 CONTROL BLOCKS AND REGISTERS
	Section - 3.4 VMEbus INTERFACE
	Section - 3.5 LOCAL BUS
	TableTitle - Table 3.5-1. Local Bus Map

	CellBody - $000000 - 03FFFF
	CellBody - $040000 - 1FFFFF
	CellBody - $200000 - 27FFFF
	CellBody - $280000 - 2FFFFF
	CellBody - $300000 - 37FFFF
	CellBody - $380000 - 3FFFFF
	SectionC - 3.5.1 CPU
	SectionC - 3.5.2 ROM
	SectionC - 3.5.3 RAM
	TableTitle - Table 3.5.3-1. RAM Map

	CellBody - $000000 - 01FFFF
	CellBody - $020000 - 03FEFF
	CellBody - $03FF00 - 03FFFF
	Figure - Figure 3.5.3-1. Ring and Linear Buffer Diagrams
	SectionC - 3.5.4 UARTs
	SectionC - 3.5.5 Jumpers
	SectionC - 3.5.6 Glue Logic
	Section - 3.6 VMEbus TIMER

	SectionTitle - SECTION 4
	SectionSubTitle - PROGRAMMING
	Section - 4.1 OVERVIEW
	Note - NOTE:
	TableTitle - Table 4.1-1. VMIVME-6016 Register Map

	CellBody - $00 - 1F
	CellBody - Global Registers
	CellBody - $20 - 2D
	CellBody - Channel Control Block 0
	CellBody - $2E - 3B
	CellBody - Channel Control Block 1
	CellBody - $3C - 49
	CellBody - Channel Control Block 2
	CellBody - $4A - 57
	CellBody - Channel Control Block 3
	CellBody - $58 - 65
	CellBody - Channel Control Block 4
	CellBody - $66 - 73
	CellBody - Channel Control Block 5
	CellBody - $74 - 81
	CellBody - Channel Control Block 6
	CellBody - $82 - 8F
	CellBody - Channel Control Block 7
	CellBody - $90 - 9D
	CellBody - Channel Control Block 8
	CellBody - $9E - AB
	CellBody - Channel Control Block 9
	CellBody - $AC - B9
	CellBody - Channel Control Block 10
	CellBody - $BA - C7
	CellBody - Channel Control Block 11
	CellBody - $C8 - D5
	CellBody - Channel Control Block 12
	CellBody - $D6 - E3
	CellBody - Channel Control Block 13
	CellBody - $E4 - F1
	CellBody - Channel Control Block 14
	CellBody - $F2 - FF
	CellBody - Channel Control Block 15
	Section - 4.2 GLOBAL REGISTER MAP
	Note - NOTE:
	TableTitle - Table 4.2-1. VMIVME-6016 Global Register Map

	CellBody - $00
	CellBody - $01
	CellBody - $02
	CellBody - $04
	CellBody - $05
	CellBody - $06
	CellBody - $08
	CellBody - $0A
	CellBody - $0C
	CellBody - $0E
	CellBody - $0F
	CellBody - $10
	CellBody - $11
	CellBody - $12
	CellBody - $13
	CellBody - $14
	CellBody - $18
	CellBody - $1A
	SectionC - 4.2.1 Board ID Register (BRD_ID)
	TableTitle - Table 4.2.1-1. Board ID Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	SectionC - 4.2.2 POR Self-Test Status Flag Register (STFLAG)
	TableTitle - Table 4.2.2-1. POR Self-Test Status Flag Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - SELF-TEST STATUS
	SectionC - 4.2.3 ROM Version Register (ROM_VER)
	TableTitle - Table 4.2.3-1. ROM Version Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - INCONSIST_OPT
	CellBody - 0
	CellBody - OLD_VIC_OPT
	CellBody - MBLT_OPT
	CellBody - SLOW_CPU_OPT
	CellBody - CHAN_OPT
	CellBody - MEM_OPT
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - FIRMWARE REVISION
	CellBody - 0
	CellBody - 0
	CellBody - 128 Kbytes
	CellBody - 0
	CellBody - 1
	CellBody - 256 Kbytes
	CellBody - 1
	CellBody - 0
	CellBody - 512 Kbytes
	CellBody - 1
	CellBody - 1
	CellBody - 1 Mbyte
	SectionC - 4.2.4 Command Register 0 (CR0)
	TableTitle - Table 4.2.4-1. Command Register 0 Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - MASTER
	CellBody - SLV_OK
	CellBody - SLV_32
	CellBody - SUPONLY
	CellBody - TXBRK
	CellBody - SLFTST
	CellBody - RST_BRD
	CellBody - LEDN
	SectionC - 4.2.5 Command Register 1 (CR1)
	TableTitle - Table 4.2.5-1. Command Register 1 Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - ARBMOD
	CellBody - BERR_TO
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 4 microseconds
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 16 microseconds
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 32 microseconds
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 64 microseconds
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 128 microseconds
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 256 microseconds
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 512 microseconds
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - Infinite
	SectionC - 4.2.6 GO Bits Register (GO)
	TableTitle - Table 4.2.6-1. GO Bits Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - Channel 15
	CellBody - Channel 14
	CellBody - Channel 13
	CellBody - Channel 12
	CellBody - Channel 11
	CellBody - Channel 10
	CellBody - Channel 09
	CellBody - Channel 08
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - Channel 07
	CellBody - Channel 06
	CellBody - Channel 05
	CellBody - Channel 04
	CellBody - Channel 03
	CellBody - Channel 02
	CellBody - Channel 01
	CellBody - Channel 00
	SectionC - 4.2.7 Transmit Request Bits Register (TX)
	TableTitle - Table 4.2.7-1. Transmit Request Bits Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - Channel 15
	CellBody - Channel 14
	CellBody - Channel 13
	CellBody - Channel 12
	CellBody - Channel 11
	CellBody - Channel 10
	CellBody - Channel 09
	CellBody - Channel 08
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - Channel 07
	CellBody - Channel 06
	CellBody - Channel 05
	CellBody - Channel 04
	CellBody - Channel 03
	CellBody - Channel 02
	CellBody - Channel 01
	CellBody - Channel 00
	SectionC - 4.2.8 Receive Accept Bits Register (RX)
	TableTitle - Table 4.2.8-1. Receive Accept Bits Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - Channel 15
	CellBody - Channel 14
	CellBody - Channel 13
	CellBody - Channel 12
	CellBody - Channel 11
	CellBody - Channel 10
	CellBody - Channel 09
	CellBody - Channel 08
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - Channel 07
	CellBody - Channel 06
	CellBody - Channel 05
	CellBody - Channel 04
	CellBody - Channel 03
	CellBody - Channel 02
	CellBody - Channel 01
	CellBody - Channel 00
	SectionC - 4.2.9 Send Break Bits Register (BREAK)
	TableTitle - Table 4.2.9-1. Send Break Bits Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - Channel 15
	CellBody - Channel 14
	CellBody - Channel 13
	CellBody - Channel 12
	CellBody - Channel 11
	CellBody - Channel 10
	CellBody - Channel 09
	CellBody - Channel 08
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - Channel 07
	CellBody - Channel 06
	CellBody - Channel 05
	CellBody - Channel 04
	CellBody - Channel 03
	CellBody - Channel 02
	CellBody - Channel 01
	CellBody - Channel 00
	SectionC - 4.2.10 Control Register 2 (CR2)
	TableTitle - Table 4.2.10-1. Control Register 2 Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - BRLEVEL
	CellBody - RELMOD
	CellBody - FAIR_TO
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	SectionC - 4.2.11 Master Size and Address Modifier Register (SZ_AM)
	TableTitle - Table 4.2.11-1. Master Size and Address Modifier Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - VMESIZE
	CellBody - ADDRMOD
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - $09
	CellBody - $0A
	CellBody - $0B
	CellBody - $0D
	CellBody - $0E
	CellBody - $0F
	CellBody - $29
	CellBody - $2D
	CellBody - $39
	CellBody - $3A
	CellBody - $3B
	CellBody - $3D
	CellBody - $3E
	CellBody - $3F
	SectionC - 4.2.12 Self-Test Procedure Register (ST_PROC)
	TableTitle - Table 4.2.12-1. Self-Test Procedure Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - RESERVED
	CellBody - 0
	CellBody - TEST_DMA_R
	CellBody - TEST_DMA_W
	CellBody - TEST_BERR
	CellBody - TEST_UART
	CellBody - TEST_TIMER
	CellBody - TEST_VINT
	CellBody - Bit 5
	CellBody - Bit 4
	CellBody - Bit 3
	CellBody - Bit 2
	CellBody - Bit 1
	CellBody - Bit 0
	SectionC - 4.2.13 Error Interrupt Control Register (ER_MSK)
	TableTitle - Table 4.2.13-1. Error Interrupt Control Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - REGBUSY_MSK
	CellBody - RFNZ_MSK
	CellBody - ST_FAIL_MSK
	CellBody - HDWE_ERR_MSK
	CellBody - BERR_MASK
	CellBody - ER_LEVEL
	SectionC - 4.2.14 Error Interrupt Vector Register (ER_VEC)
	TableTitle - Table 4.2.14-1. Error Interrupt Vector Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - VECTOR
	SectionC - 4.2.15 Buffer Base Register (BUFBASE)

	CellBody - 256 Kbytes
	CellBody - 128 Kbytes
	CellBody - 256 Kbytes ($40000)
	CellBody - 512 Kbytes
	CellBody - 256 Kbytes
	CellBody - 512 Kbytes ($80000)
	CellBody - 1 Mbyte
	CellBody - 512 Kbytes
	CellBody - 1 Mbyte ($100000)
	CellBody - 2 Mbytes
	CellBody - 1 Mbyte
	CellBody - 2 Mbytes ($200000)
	SectionC - 4.2.16 Global Status Register (GST)
	TableTitle - Table 4.2.16-1. Global Status Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - ANYERR
	CellBody - GLBILL
	CellBody - STBUSY
	CellBody - SCON
	CellBody - RFNZ
	CellBody - STFAIL
	CellBody - HDWEERR
	CellBody - BERR
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - REGBUSY
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - GLBILL
	CellBody - Illegal Global Register Content
	CellBody - RFNZ
	CellBody - Reserved Field Nonzero
	CellBody - STFAIL
	CellBody - Self-Test Error
	CellBody - HDWEERR
	CellBody - Hardware Error
	CellBody - BERR
	CellBody - BERR* on VMEbus master cycle
	Note - NOTE:
	SectionC - 4.2.17 Master Granularity (MAS_GRN)

	TableTitle - Table 4.2.17-1. Master Granularity Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - VALUE
	Section - 4.3 CHANNEL CONTROL BLOCKS
	TableTitle - Table 4.3-1. VMIVME-6016 Channel Control Block Map�

	CellBody - $00
	CellBody - $02
	CellBody - $03
	CellBody - $04
	CellBody - $05
	CellBody - $06
	CellBody - $07
	CellBody - $08
	CellBody - $09
	CellBody - $0A
	CellBody - $0B
	CellBody - $0C
	CellBody - $0D
	SectionC - 4.3.1 Channel Status Register (CST)
	TableTitle - Table 4.3.1-1. Channel Status Register Bit Map

	CellBody - Bit 15
	CellBody - Bit 14
	CellBody - Bit 13
	CellBody - Bit 12
	CellBody - Bit 11
	CellBody - Bit 10
	CellBody - Bit 09
	CellBody - Bit 08
	CellBody - DCD_COS
	CellBody - CTS_COS
	CellBody - DCD
	CellBody - CTS
	CellBody - INTBSY
	CellBody - ILL
	CellBody - URCV_RDY
	CellBody - UTX_RDY
	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - BRK_RCVD
	CellBody - FE
	CellBody - PE
	CellBody - OVERRUN
	CellBody - TXEMT
	CellBody - TXRDY
	CellBody - FFUL
	CellBody - RXRDY
	SectionC - 4.3.2 Channel Interrupt Mask Register (CH_MSK)
	TableTitle - Table 4.3.2-1. Channel Interrupt Mask Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - COS_MSK
	CellBody - ERR_MSK
	CellBody - BREAK_MSK
	CellBody - RCV_MSK
	CellBody - TX_MSK
	CellBody - CH_LEVEL
	SectionC - 4.3.3 Channel Interrupt Vector Register (CH_VEC)
	TableTitle - Table 4.3.3-1. Channel Interrupt Vector Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - VECTOR
	SectionC - 4.3.4 End-of-Block Code Register (EOB)
	TableTitle - Table 4.3.4-1. End-of-Block Code Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - VALUE
	SectionC - 4.3.5 Flow Control XOFF Code Register (XOFF)
	TableTitle - Table 4.3.5-1. Flow Control XOFF Code Register

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - CODE
	SectionC - 4.3.6 Flow Control XON Code Register (XON)
	TableTitle - Table 4.3.6-1. Flow Control XON Code Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - CODE
	SectionC - 4.3.7 BREAK Duration Register (BRK_DUR)
	TableTitle - Table 4.3.7-1. BREAK Duration Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - DURATION IN MILLISECONDS
	SectionC - 4.3.8 Internal Ring Size Register (SZ_RING)
	TableTitle - Table 4.3.8-1. Internal Ring Size Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - NUMBER OF BLOCKS
	SectionC - 4.3.9 Internal Ring Low Water Mark Register (LO_RING)
	TableTitle - Table 4.3.9-1. Internal Ring Low Water Mark Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - NUMBER OF BYTES
	SectionC - 4.3.10 Internal Ring High Water Mark Register (HI_RING)
	TableTitle - Table 4.3.10-1. Internal Ring High Water Mark Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - NUMBER OF BYTES
	SectionC - 4.3.11 Channel Control Byte 1 Register (CH_CON1)
	TableTitle - Table 4.3.11-1. Channel Control Byte 1 Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - BIt 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - UB_RING
	CellBody - FLOWCON
	CellBody - BAUD
	Note - NOTE:

	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody -
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	SectionC - 4.3.12 Channel Control Byte 2 Register (CH_CON2)
	TableTitle - Table 4.3.12-1. Channel Control Byte 2 Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody - INP_TIMEOUT
	CellBody - TWO_STOP
	CellBody - PAR_TYP
	CellBody - PAR_ODD
	CellBody - SZ_CHAR
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 1
	CellBody - 1
	CellBody - 0
	CellBody - 0
	CellBody - 0
	CellBody - 5
	CellBody - 0
	CellBody - 1
	CellBody - 6
	CellBody - 1
	CellBody - 0
	CellBody - 7
	CellBody - 1
	CellBody - 1
	CellBody - 8
	SectionC - 4.3.13 User Buffer Size Register (SZ_UBUF)
	TableTitle - Table 4.3.13-1. User Buffer Size Register Bit Map

	CellBody - Bit 07
	CellBody - Bit 06
	CellBody - Bit 05
	CellBody - Bit 04
	CellBody - Bit 03
	CellBody - Bit 02
	CellBody - Bit 01
	CellBody - Bit 00
	CellBody -
	CellBody - 128 Kbytes
	CellBody - 32
	CellBody - 256 Kbytes
	CellBody - 64
	CellBody - 512 Kbytes
	CellBody - 128
	CellBody - 1 Mbyte
	CellBody - 0
	Figure - Figure 4.3.13-1. Buffers
	Section - 4.4 GENERAL PROGRAMMING DETAILS
	SectionC - 4.4.1 Introduction

	Note - NOTE:
	SectionC - 4.4.2 Channel Shutdown
	SectionC - 4.4.3 Global Setup for Board Operation
	SectionC - 4.4.4 Channel Setup
	SectionC - 4.4.5 Channel Startup
	SectionC - 4.4.6 Channel Operation
	SectionC - 4.4.7 Restarting After an Error Interrupt
	SectionC - 4.4.8 Performance Considerations
	SectionC - 4.4.9 Usage Notes on VMIVME-6016 Registers

	TableTitle - Table 4.4.1-1. VMIVME-6016 Register and Field Symbols�
	Section - 4.5 GENERAL PROGRAMMING EXAMPLES
	Section - 4.6 RUNNING SELF-TESTS FROM THE HOST

	TableTitle - Table 4.6-1. CST[0] Register Self-Test Failure Codes
	TableTitle - Table 4.6-2. Test Bits in STPROC Register

	CellBody - Bit 5
	CellBody - Bit 4
	CellBody - Bit 3
	CellBody - Bit 2
	CellBody - Bit 1
	CellBody - Bit 0
	Section - 4.7 SAMPLE HEADER FILE
	SectionC - 4.7.1 Sample Header File for Indivisible RMWs
	SectionC - 4.7.2 Assembler Source File for 680x0 RMW Instructions
	SectionTitle - SECTION 5
	SectionSubTitle - CONFIGURATION AND INSTALLATION
	Section - 5.1 UNPACKING PROCEDURES
	Section - 5.2 PHYSICAL INSTALLATION
	Section - 5.3 JUMPER CONFIGURATIONS
	SectionC - 5.3.1 VMEbus Address Configuration
	Figure - Figure 5.3.1-1. Base Address and Access Mode Selection
	SectionC - 5.3.2 System Controller Configuration
	List1 - a. Full-function, four-level bus arbiter. The arbitration method used can be toggled betw...
	List1 - b. The 16 MHz SYSCLK VMEbus system clock.
	List1 - c. The SYSRESET* system reset signal.
	List1 - d. IACK* interrupt acknowledge daisy-chain driver.
	List1 - e. VMEbus BERR bus error timer. By default, the VMIVME-6016 activates the BERR* signal wh...

	SectionC - 5.3.3 Hardware Reset
	SectionC - 5.3.4 Fixed Jumpers

	Figure - Figure 5.3-1. VMIVME-6016 Jumper Field Locations

	SectionTitle - SECTION 6
	SectionSubTitle - MAINTENANCE
	Section - 6.1 MAINTENANCE
	List1 - a. Software
	List1 - b. System configuration
	List1 - c. Electrical connections
	List1 - d. Jumper or configuration options
	List1 - e. Boards are fully inserted into their proper connector location
	List1 - f. Connector pins are clean and free from contamination
	List1 - g. No components of adjacent boards are disturbed when inserting or removing the board fr...
	List1 - h. Quality of cables and I/O connections
	List1 -

	Section - 6.2 MAINTENANCE PRINTS

