

VMICPCI-PS351 CompactPCI Hot-Swap Power Supply

- 350 W in only two slots (8 HP)
- Low cost
- High-performance cooling fins directly in airstream, allows full power operation to 35 °C with specified airflow
- N+1 redundant and hot swap operation on all output voltages
- Current sharing and remote sensing on 5, 3.3, and +12 V outputs
- Power factor correction
- Unique input current limiting eliminates nuisance fuse clearing caused by heavy load configurations or brownout conditions
- Straight-line output current limiting does not fold-back or latch-up during startup or load transients
- Ruggedized mechanical design
- Equipped positronic connector
- UL, cUL approved

INTRODUCTION — The VMICPCI-PS351 350 W

CompactPCI® power supply is a high-performance power supply for use in 6U CompactPCI computer, test, and telecom systems. It meets all of the requirements of the PICMG CompactPCI specification, plus N+1 redundant and hot-swap applications. The high-density cooling fins are positioned directly in the airstream. The LED status indicators are located on the front panel. It has 6U x 8 HP x 160 mm form factor.

ELECTRICAL DATA

Output Power: 350 W

Power Factor: 0.99 typical

Inrush Current: 40 A maximum

Efficiency: 75 percent typical

Holdup Time: 20 ms minimum from input power failure until FAIL# signal drops, at full load and 90 to 264 VAC

Voltage Ranges:

Input Voltage: 90 to 264 VAC, 6 A maximum

Output Voltage/Maximum Current: 5 V/40 A, 3.3 V/25 A, +12 V/9 A, -12 V/2 A

PHYSICAL CHARACTERISTICS

Height with Front Panel: 261.85 mm

Width: 40.34 mm

Depth: 175.26 (mounted)

Remote Sense: The VMICPCI-PS351 compensates for 0.25 V total distribution voltage drop on the 3.3, 5, and +12 V outputs

AC Fail Warning: 5 ms minimum continued operation after FAIL# signal drops

Paralleling: Any number of power supplies can be operated in parallel and will share 3.3, 5, and +12 V, current to within 10 percent

Line/Load Regulation: 0.5 percent of maximum AC input range and 0 to 100 percent load

Ripple/Noise: 50 mV maximum for all outputs, peak-to-peak, DC to 20 MHz with coaxial probe and $0.1 \,\mu$ f/22 μ f capacitors at the connector

Overshoot/Undershoot Turn-On Time: None at turn-on or turn-off, 1 s maximum from AC powerup. All output voltages come up within 10 ms of each other.

Current Limiting: All outputs protected against overload and short circuit. Straightline current limiting, does not fold-back or latch-up during startup or load transients. Automatic recovery.

Overvoltage: Shutdown at 130 percent of nominal Vout. Recycle power to reset.

Overtemperature: Shutdown at internal heat sink temperature of 95 °C. Recycle power to reset.

EMC: EN55022 Class A conducted and radiated. EN60555-2 harmonic distortion.

Input Fuse: Internal one-pole 10 A NTD fuse

Output Isolation: All outputs and control signals are floating SELV circuits referenced to GND and with 0.1 μ f/100 k Ω to chassis ground and reinforced isolation to the AC primary. It can be connected directly to chassis ground on the system backplane.

Leakage Current: 1.5 mA maximum at 240 VAC

Dielectric Strength: 2,200 VDC from either AC input to chassis ground

Indicators: Green LED indicating INPUT OK. Red LED indicating a power supply FAULT. Figure 1 describes the status indicators as related to the conditions of the power supply.

Connector: Positronic part no. 138F4000A1. Connector pinout and description described in Table 2.

Cooling: 15 CFM/400 LFM forced air required through power supply cooling fans and enclosure

Operating Temperature: Full power from -20 to +35 °C with specified air flow. Consult the factory for derating with reduced airflow or increased temperature conditions. Figure 2 provides a graph of output power versus temperature and airflow.

Storage Temperature: -40 to + 85 °C

Shock/Vibration: Ruggedized construction to MIL-HDBK-810E

MTBF: 250,000 hours (217F)

TRADEMARKS

The VMIC logo is a registered trademark of VMIC. CompactPCI and PICMG are registered trademarks of PCI Industrial Computer Manufacturers' Group. Other registered trademarks are the property of their respective owners.

Condition	Power Supply On/Off	Input OK LED	Fault LED	Fault No.
Inputs/Outputs OK, EN# low	On	On	Off	Open
INH# signal low	Off	On	On	Low
INH# high, EN# high	Off	On	On	Low
Low AC or DC input	Off	Off	On*	Low
Internal overtemperature	Off	On	On	Low
Output undervoltage	Off**	On	On	Low
Output overvoltage	Off**	On	On	Low
Output short circuit	Off**	On	On	Low

Figure 1. Status Indicators

*If the input is below approximately 20 V, the FAULT LED will not illuminate.

**Typically, only the output exhibiting the fault conditions will be off.

Note: LFM is the airflow in feet per minute average through the power supply enclosure

Pin No.	Signal	Pin No.	Signal	Description	
1	+5 V	24	+5S	Remote sense for +5 V output	
2	+5 V	25	EN#	Connect to GND to enable power supply	
3	+5 V	26	-SENSE	Remote sense return for +3.3, +5, +12 V outputs	
4	+5 V	27	+3.3S	Remote sense for +3.3 V output	
5	GND	28	RSVD	RESERVED	
6	GND	29	DEG#	Open-collector, low output when power supply is within	
7	GND			10 °C of shutting down due to overtemperature	
8	GND	30	+12S	Remote sense for +12 V output	
9	GND	31	INH#	Connect to GND to inhibit power supply	
10	GND	32	+51	Connect to paralleled power supply for +5 V current sharing	
11	GND	33	+3.31	Connect to paralleled power supply for +3.3 V current sharing	
12	GND	34	+12I	Connect to paralleled power supply for +12 V current sharing	
13	+3.3 V	35	FAIL#	Open-collector, low output when power supply has failed	
14	+3.3 V	36	CGND	Chassis grounded	
15	+3.3 V	37	N	Neutral (AC) or 48 V return (DC)	
16	+3.3 V	38	Line	(AC) or -48 V (DC)	
17	GND				
18	+12 V				
19	RSVD				
20	RSVD				
21	-12 V				
22	GND				
23	GND				

Table 1. Connector Pinout

	38	
37		●
	36	•
34	35	
31	33 32	
26	³⁰ 38	
25	24 38	
22	38 21	•••
19	20	
17	18	
15	16	
13	14	
9	10	
7	8	
5	6	
3	4	●●
1	2	
		VN

Table 2. Connector Pinout and Description

Pin No.	Signal	Pin No.	Description
1	+5 V	20	-48 V RTN
2	+5 V	21	-12 V
3	+5 V	22	GND
4	+5 V	23	GND
5	GND	24	+5S
6	GND	25	EN#
7	GND	26	-SENSE
8	GND	27	+3.3S
9	GND	28	RSVD
10	GND	29	DEG#
11	GND	30	+12S
12	GND	31	EN#
13	+3.3 V	32	+51
14	+3.3 V	33	+3.31
15	+3.3 V	34	+121
16	+3.3 V	35	FAIL#
17	GND	36	CGND
18	+12 V	37	Ν
19	48 V OUT	38	L