CAN-Bus Interface for W-I€-N€-R
Crate Remote Control

A. Ruben, A. Koster, W-Ie-Ne-R Plein Baus GmbH,
Miillersbaum 20, D-51399 Burscheid

CAN-BUS Interface for W-Ie-Ne-R Crate Remote Control

A. Ruben, A. Koster, W-IE-NE-R Plein & Baus GmbH,
Miillersbaum 20, 51399 Burscheid
25 January 1996

1. W-Ie-Ne-R CAN based crate remote control

Due to the enlargement of the electronic set-up in modern experiments the crate remote
control as a part of the slow-control system becomes more and more important.

Based on the development of the W-Ie-Ne-R p-processor controlled intelligent fan-tray-
units which can be equipped with the W-Ie-Ne-R CAN bus interface this remote control
can be integrated within an CAN fieldbus system.

In addition to the remote on / off and SYSRES (VME) the user can control and program
remotely every crate parameter via the interface as:

All voltages,

All current limits,

Over- and Undervoltage trip off points,
Overcurrent trip off points,
Temperature measurements:

- Power supply

- Fan tray air inlet

- air outlet temperature on top of slot 1
o Status signals,

e Average speed of the fans and display of every single fan speed,
e Identification of the crate,

e Configuration and adjustment.

Some of the values given above can only be changed by authorised persons. All commands
for configuration, calibration or maintenance functions for system service are disabled
(jumper) for the user. !

If any error (e.g. fan failure) is detected, a high priority message is transmitted from the can
interface itself (without request from the server).

The crate identification number may be in the range from 1 to 126. It is possible to enable a
"general call" access (e.g. to switch on some crates with only one can bus command), and to
disable the can interface (for troubleshooting).

IThe transfer protocol is identical for all different crates (VME, CAMAG, ...), but the realy available
commands are dependend of the real target.

00183.A0 1 CAN-Interface, 5/99

2. Introduction to the CAN-Bus

2.1. General Features of CAN

The Controller Area Network (CAN) defined by Bosch in 1985 is an advanced serial
multimaster communication protocol. Due to the reliability and technical capability as well
as to the available low-price system components CAN is well suited for application in
fieldbus system. The most important features of CAN 2 are:

e unlimited number of nodes (depending on physical layer)

e serial, asynchronous, object-oriented, multi-master communication

e 2032 priorities (message IDs) in standard frame

e max. 8 data bytes per message

e CSMA(CA (collision avoidance) bus access priority controlled (ID) with non-
destructive bit-wise arbitration

e wide range of transmission rates (programmable), high speed up to 1.6Mbit/s (577kbit/s
information)

e twisted pair cabling, line or star topology

e real-time capability, guaranteed latency time for high priority messages <134us
(1Mbit/s)

e high level of reliability and safety due to integrated error detection (HD=6), handling

and confinement, less than 10-13 undetected errors per message

2.2. Specification and standardisation of CAN

The CAN specification and standardisation is based on the following ISO reference model
for Open Systems Interconnections3,

OSI-Layer 7 Application specified by system designer, several proposals as
CMS(CAL)

OSI-Layer 6 Presentation empty

OSI-Layer 5 Session empty

OSI-Layer 4 Transport empty

OSI-Layer 3 Network empty

OSI-Layer 2 Data Link covered by CAN-protocol specs and ISO standard,
implemented on CAN-controller ICs

OSI-Layer 1 Physical covered by ISO standard and partially by CAN
protocol

The CAN protocol is defined in the CAN specifications version 2.0 part A (standard frame)
and B (extended frame). Two draft have been worked out by the ISO,

o ISO/DIS11898
o ISO/DIS11519 part 1

CAN high-speed; 125kbit/s to 1Mbit/s, max 30 nodes
CAN low-speed; up to 125kbit/s, max. 20 nodes

2CAN Specification Version 2.0, Philips Semiconductors Hamburg, 1991
3ISO 7498 Information Processing System - OSI Basic Reference Model, 1984

00183.A0 2 CAN:-Interface, 5/99

2.3. CAN high speed physical layer and transmission medium

Both high-speed an low-speed CAN are using a two-wire differential bus line with common
return.

The maximum distance between two nodes is determined by the transmission rate

Max. Distance Bit Rate Type
10 m 1.6 Mbit/s
40 m 1.0 Mbit/s
130 m 500 kbit/s high- speed
270 m 250 kit/s
530 m 125 kbit/s
620 m 100 kbit/s
1300 m 50 kbit/s
3300 m 20 kbit/s low-speed
6700 m 10 kbit/s
10.000 m 5 kbit/s

In case of high-speed CAN the bus line has to be terminated with 1200hm (characteristic
impedance)

Node 1 . Node X

CAN_H

120 Ohms 120 Ohms

l CAN_L
- &

Fig. 1, Can bus line termination

The CAN high-speed bus node levels are:

recessive dominant

VCAN_H - VCAN_L -500mV to +500mV, +1.5V to +3.0V
no load (600hm load)

00183.A0 3 CAN-Interface, 5/99

2.4. CAN data frame

To guarantee high flexibility and a (theoretically) unlimited number of node the CAN bus
data transfer is organised according to the object-oriented transmission principle. CAN
nodes don't have a fixed address, i.e. every message can be detected by every bus node at
the same time (broadcast). The decision to process the message or not is done by each node
itself with the assistance of an acceptance filter.

The CAN data frame is shown in the following figure4,

INTERFRAME lNTERFRAME_’
" space DATA-FRAME SPACE
Number 0..8
o 1 11 1 6 15 1 1 7 > 3
of bits Bytes
L— END OF FRAME
L ACK DELIMITER
) } ACK
L—— ACK SLOT
CRC DELIMITER
} CRC
L——- CRC SEQUENCE
L DATA
L— CONTROL
‘ RTR BIT Abbreviations :
} ARBITRATION RTR Remote Transmission Request
L— IDENTIFIER CRC Cydlic
Rsoosos.ceu —— START OF FRAME ACK Acknowledge

Fig. 2, CAN data frame

4Phi]ips Semiconductor, Application Note HKI/AN 92 001,

00183.A0

CAN:-Interface, 5/99

3. W-Ie-Ne-R CAN Interface Card

The W-Ie-Ne-R CAN-bus Interface for crate remote control is a plug-on card which can be

optionally mounted within our processor-controlled fan trays. It is equipped with the
PHILIPS micro controller PR0C592 including a 80C51 CPU kernel and a CAN Controller
(CAN Spec. 2.0A).

The connection to the physical bus is done with an opto-isolated transceiver with controlled
rise and fall slope to reduce RFI and allow the use of unshielded cable (PCA82C250). The
transceiver allows to connect at least 110 nodes to a high speed (1 Mbaud) bus.

For CAN-bus interfacing the fan trays are equipped on the front panel with a 9-pin male
DSUB connector according to the CiA-spec. DS102-15.

4. CAN based Crate Remote Protocol Definition

The following address range definition as well as the protocol (which is based on a subset
of the CAN Application Layer (CAL) protocol) is based on basic principles which are
conform to the standards used at BESSY I/ Control System Division®.

4.1. Identifier / Address bit map definition

The Object-ID (11 bits) space is divided into an Node-ID (7 bits and a SubObject-ID (4
bits). The access of up to 127 crates is favoured due to the driver capability of the used
CAN Controller P8OC592 (up to 110 nodes). In addition, a second ,,general call“ address
(default 127) may be used to simultaneously switch on or call for data to all connected
crates. To avoid Object-ID = 0 the Node-ID = 0 is forbidden.

The SubObject-ID bits refer to 13 different ID values for each crate with the following
functions (see for detail next page table):

o Status / Control

o Voltage / current values for power channels O - 4
° Voltage / current values for power channels 3 - 7
® Fan speed, Temperatures

° Temperatures

° Ident, configuration

° Voltage configuration

The reduction of the SubObject-ID space of 4 bits to 13 different ID-function values
considers the reserved COB identifier of the CAL protocol as well as the ID’s reserved by
the P8xC592.

To guarantee nearly same rights to all nodes / crates the Node-ID has to be fixed within the
7 lowest significant bits. Due to the 8-bit acceptance code register (ACR) of the applied
PHILIPS micro controller P8xC592 the ID-check has to be done by the software within the
controller chip, i.e. the acceptance code register can not be used. However, this allows the
definition and use of the boadcast-ID for a call of all nodes.

SCAN Physical Layer for Industrial Applications, Draft Standard CiA/DS 102-1, CiA 1992
%Protokoll fiir den CAN-Bus-Anschluf} der HF-Anlagen-SPS, R. Lange, BESSY II, Control System
Division, 1995

00183.A0 5 CAN-Interface, 5/99

Thus the SubObjectID and NodeID definition has the following schema

ID-bit 10 9 8 7 6 5 4 3 2 1 0
ACR-range |ac.7|ac.6|ac5]|ac4|ac3|ac2|acl|acO]| - - -

NodelD n6 | n5 n4d | n3 | n2 | nl n0
SubObjectID | s3 | s2 [s1 [s0

This ID-bit mapping does not directly correspond to the CAL / CMS priority definition
(priority level 1 ... 7) however, the reserved COB identifier (1761 ... 2031) are considered
by reducing the SubObjectID to 13 values:

ID-Function Name [s3|s2|sl|s0| ID-range
Read Status from Crate IDstat 0]0j(0|O0 1...127
Write Control Command to Crate IDctrl 0[0]0]1 129 ... 255
Read voltage/current channel 0+4 IDvc04 [0]0]|1]0 157 ...383
Read voltage/current channel 1+5 IDvel5 |00 |11 385...511
Read voltage/current channel 246 IDve26 |0 |1 [0]|0]| 513..639
Read voltage/current channel 3+7 IDve37 |0 |1]0 |1} 641..767
Read fan speed IDfan O[1|1]0] 769..895
Read temperatures IDtemp |O[1]1|1] 897..1023
reserved 110]0f0] 1025...1151
Crate sends voltage configuration data IDucfgC [1]0]0 |1 | 1153..1279
Host requests/programs voltage IDucfgH [1 (0| 1|0/ 1281...1407
configuration data
Crate sends configuration data IDcfgC | 1|01 |1] 1409...1535
Host requests/programs configuration data| IDcfgH |1 {10 |0 | 1537... 1663

The ID-range 1664 ... 1760 corresponding to the higher part of the CAL CMS priority level
7 is free and can be used for other nodes.

4.2. Crate message exchange principles

4.2.1. Write data to crate

To set values for control (ON/OFF, SYSRES,...), fan speed, voltage channel parameters, ...
the host can send a data frame to a single node or to all crates using the broadcast NodelD.
Each crate can be enabled/disabled for broadcast calls.

Client (Host) Server (Crate)
send ! indication
‘+—I l D lRTR:(i application data l ""_—’
0 L(0<=L<=8) confirm

Fig.3, Write data to crate principle

00183.A0 6 CAN-Interface, 5/99

4.2.2. Read crate parameters

The main crate parameters are sent by the crate (within standard data frame) after request

from the host which is transmitted via remote frame (RTRbit=1).

request remote transmit request

——

0 L(0<=L<=8)

I ID |RTR=(1 application data

Client (Host) Server (Crate)

indication

([] -

confirm { response

Fig. 5, Standard remote request principle

4.2.3. Indexed Read-Write Access (multiplexed variables)

For the read-out and control of not often required crate parameters (set-up, identifier,
calibration, software versions, trip off points, ...) indexed read and write procedures are
used which are conform to the read-write access of CAL-multiplexed variables. The first
data byte i corresponds to the index (<127) or multiplexor whereby, the highest significant
bit is used as a specifier for the command type or returned result. The ID’s for host- and

crate-write for one multiplexed variable are not identical.

{—4—{ I ID-y I RTR=0 I i l application data l i_+—

0 L(1<=L<=8)

Client (Host) Server (Crate)
request indexed data request indication
————’_‘—LLID-x I RTR:O] requested data index i l
: 0 L=1
confirm » response

Fig. 6, Indexed data request principle

Read requests may be transmitted by the host at any time without waiting for response. (If
there are multiple read requests for the same data, the crate will answer only once.) To
avoid data overrun the host is not allowed to send again a write request before receiving the

answer (e.g. programming status) from the selected crate.

00183.A0 7

CAN-Interface, 5/99

4.2.4. Failure messages

In case of a crate failure the status is given automatically by this crate to the host. Due to
the highest priority of the status-ID within the SubObjectID range this message reaches the
host within the shortes time which is possible independently from the crate/node-ID.

confirm

Client (Host) Server (Crate)

indication

l 1D IRTR=4 application data

0 L(0<=L<=8)

send

Fig.7, Failure message transfer principle

4.3. Crate commands and SubObjects

e IDstat - Get Crate Status

last access via can bus

RTR Byte Byte1 |Byte2 | Byte3 | Byte4 | Byte5 Byte 6 | Byte7 | Byte 8
Count
Host request 1 1-8 - - - - - - -
Crate confir 0 |sameas | status | status | under- | over- |external | over- ovp power
host byte0 | byte 1 |voltage [voltage temp- | curernt error supply
request error error eratur error flags temp-
flags flags error flags eratur
flags7 error
flags
Status Byte 0
Bit 0 1
0 power is off power is on
1 external power inhibit no external power inhibit
2 power fail ac is in limit
3 any error, see other flags for specification |no error condition
4 fans are broken fans are ok
5 trip off if fans are broken is disabled trip off if fans are broken is enabled
6 trip off if any error is disabled trip off if any error is enabled
7 vme bus signal sysfail active (low) vme bus signal sysfail inactive (high)
Status Byte 1
Bit 0 1
0 reserved (0)
1 reserved (0)
2 reserved (0)
3 reserved (0)
4 reserved (0)
5 flash/eeprom data has not changed since flash/eeprom data has changed (e.g. with

the manual control of a fan tray)

6 no flash/eeprom data checksum error flash/eeprom checksum error, default
values are used
7 no write protect (service only) hardware write protect

" New in CANBUS 1.04, it was reserved for “undercurrent error flags” before, but never implemented

00183.A0

CAN-Interface, 4/02

The error flags in byte 3-8 are O if ok and 1 if an error condition is valid. There is one bit for
each voltage. If the hardware is not able to detect which voltage makes trouble, all bits are set.

If bit 3 of the status byte changes indicating an error, the crate sends the complete status frame

(8 bytes) to the host without request.

IDctrl - Send Control Command

RTR CByte Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte 8
ount

Host writes data to 0 1,2 control fan

crate byte speed

Control Byte

Bit |0 1

0 disable crate switch (see bit 1) enable crate switch (see bit 1)

1 switch crate off (only used if bit 0 = 1) switch crate on (only used if bit 0 = 1)
2 nothing to do generate vme-sysreset

3

4

5

6 error trip off enable error trip off disable

7 don’t change the fan speed change the fan speed (new value in byte

2)

IDvc04, IDvcl5, IDve26 and IDve37 - Get measured Voltage and Current of channels 0 ... 7

RTR Byte |Byte1 |Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte8
Count
Host request 1 1-8 - - - - - - - -
Crate confirm same as| u0 (ul, [u0 (ut, |i0 (i1, i2,]i0 (i1, i2,| u4 (u5, | u4 (us, |i4 (i5, i6, |i4 (i5, i6,
host | u2, u3), | u2, ud), | i3), low | i3), high | ué, u7), | ug, u7), | i7), low |i7), high
request | low byte [high byte| byte byte [low byte [high byte| byte byte

16 bit signed binary data (Voltage or current).

You must get the exponent with the ,,Ucfg“-Command. Only two different
exponents are used for each channel: one for the voltages and one for the currents.
During initialisation, you must request some voltage data (e.g. ,,Output Voltage

Settings* and some current data (e.g. Current Limit Settings*) with the Ucfg
command to get this two exponents.
If the exponents are both -2, the voltage range is between -327.68V and +327.67V
and the current range is between -327.68A and +327.67A)

IDfan - Get Fan speed

RTR Byte | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte 8
Count
Host request 1 1-8 - - - - - - - -
Crate confirm 0 same | middle |[nominal | fan1 fan 2 fan 3 fan 4 fan 5 fan 6
as host fan fan speed | speed | speed | speed | speed | speed
request | speed | speed

The fan speed is defined as ,,turns per second*.

Not existing fans are 255.

00183.A0

CAN-Interface, 4/02

e ID_Temp - Get Temperatures

RTR | Byte | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte 6 | Byte 7 | Byte 8

Count
Host request 1 1-8 - - - - - - - -
Crate confirm 0 same | extbin | ext./bin | ext/bin | ext/bin | ext/bin | ext/bin | ext/bin | ext/bin
ashost | temp1 |temp2 | temp 3 | temp4 | temp5 | temp6 | temp7 | temp 8
request | (if not (or

existing: | power

fan air | supply
inlet air

temp.) | temp.)

The temperature range is -128 ... +127 °C.
Not supported temperatures are -128.

e IDucfgC, IDucfgH - Get / Set Voltage Configuration Data

ID Byte Byte1 | Byte2 | Byte3 | Byte4 | Byte 5 | Byte 6 | Byte 7 | Byte 8
Count
Output Voltage Settings
Host request UcfgH 1 128+Ui+0 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+0 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+0 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8| ui+0 value value min. * min.* | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+0 Status - - - - - -
Current Limit Settings
Host request UcfgH 1 128+ui+1 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+1 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+1 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8] ui+1 value value min. * | min.* | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+1 Status - - - - - -
Undervoltage Compare Settings
Host request UcfgH 1 128+ui+2 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+2 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+2 Status - - - - - -
Host writes data to UcfgH (3, 5,7, 8] ui+2 value value min. * min. * | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+2 Status - - - - - -
Overvoltage Compare Settings
Host request UcfgH 1 128+ui+3 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+3 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+3 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8] ui+3 value value min. * min. * max. * max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+3 Status - - - - - -
minimum Current Compare Settings
Host request UcfgH 1 128+ui+4 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+4 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+4 Status - - - - - -

00183.A0 10 CAN-Interface, 5/99

ID Byte Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte 7 Byte 8
Count
Host writes data to UcfgH |3, 5,7, 8] ui+4 value value min. * min. * | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+4 Status - - - - - -
Overcurrent Compare Settings
Host request UcfgH 1 128+ui+5 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+5 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+4 Status - - - - - -
Host writes data to UcfgH [3, 5,7, 8] ui+5 value value min.* | min.* | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+5 Status - - - - - -
Overvoltage Protection
Host request UcfgH 1 128+ui+6 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+6 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+6 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8 ui+6 value value min.* | min.* | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+6 Status - - - - - -
Temperature Warning cansus 1.01) 7
Host request UcfgH 1 128+ui+7 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+7 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+7 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8] ui+7 value value min. * min. * | max.* max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+7 Status - - - - - -
Temperature Limit cansus 1.01) 7
Host request UcfgH 1 128+ui+8 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+8 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+8 Status - - - - - -
Host writes data to UcfgH |8, 5,7, 8] ui+8 value value min. * min. * | max. * max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+8 Status - - - - - -
Output Voltage fine adjustment cansus 1.03)
Host request UcfgH 1 128+ui+9 - - - - - - -
Crate confirm (ok) UcfgC 8 ui+9 value value min. min. max. max. exp.
(low) (high) value value value value
(low) (high) (low) (high)
Crate confirm (fail) UcfgC 2 ui+9 Status - - - - - -
Host writes data to UcfgH |3, 5,7, 8] ui+9 value value min. * min. * | max. * max. exp. *
crate (low) (high) value value value value
(low) (high) (low) (high)
Crate confirm UcfgC 2 ui+9 Status - - - - - -
ui: channel number * 16 (0: U/10, 16: U/, 32: U/12, ..., 112: U/17)

Value: 16 bit signed binary data (Voltage or current)

Exp.: 8 bit signed exponent of the values. (If the exponent is -2, the value range is between
-327.68 and +327.67.) Only two different exponents are allowed for each channel: one
for all voltages and one for all currents.

7 Temperature warning and limit allways for BIN/external temperature sensors.

00183.A0 11 CAN-Interface, 5/99

Status:

CANBUS

00183.A0

252:
253:

254:
255:

XXX

ok
trying to program ,,write protected* data without permission

not allowed value (min. value > max. value, min. value > value, max. value <
value)

undefined command
command is not supported by the existing hardware
not allowed byte count

data overrun (a new host write request is received before the crate confirm of the
previous write request is transmitted). The new data will be ignored by the crate. If
there are multiple data overruns, only the first error will be answered; all errors
occuring between the first error and the time the error message is transmitted will
be ignored quiet)

hardware error (eeprom checksum not ok)
hardware error (unable to access the eeprom data)

read-only values

Function is only supportet in CANBUS Software X.XX or higher

12 CAN-Interface, 5/99

e IDcfgC, IDcfgH - Get / Set Configuration and Version Data

ID Byte Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte 8

Count
CAN Crate Control Software Version
Host request cfgH 1 128+0 - - - - - - -
Crate confirm cfgC 8 0 ‘C’ ‘A ‘N’ X X X
Fan Software Version
Host request cfgH 1 128+1 - - - - - - -
Crate confirm (ok) cfgC 8 1 D0 ID1 ID2 D3 D4 D5 ID6
Crate confirm (fail) cfgC 2 1 Status - - - - - -
Host request cfgH 1 128+2 - - - - - - -
Crate confirm (ok) cfwR 8 2 D7 D8 ID9 ID10 ID11 ID12 ID13
Crate confirm (fail) cfgC 2 2 Status - - - - - -
Power Supply Software Version
Host request cfgH 1 128+3 - - - - - - -
Crate confirm (ok) cfgC 8 3 IDO D1 D2 D3 ID4 D5 D6
Crate confirm (fail) cfgC 2 3 Status - - - - - -
Host request cfgH 1 128+4 - - - - - - -
Crate confirm (ok) cfgC 8 4 ID7 D8 1D9 ID10 ID11 D12 ID13
Crate confirm (fail) cfgC 2 4 Status - - - - - -
Fan Operating Time (cansus 1.02)
Host request cfgH 1 12845 - - - - - - -
Crate confirm cfgC 4 5 Minutes | Minutes | Minutes - - - -

(low) {(middle) | (high)

Power Supply Operating Time (cansus 1.02)

Host request cfgH 1 12846 - - - - - - -

Crate confirm cfgC 4 6 Minutes | Minutes | Minutes - - - -
(low) |(middle) | (high)

Fan ID String

Host request cfgH 1 12848 - - - - - - -
Crate confirm (ok) cfgC 8 8 DO D1 D2 ID3 1D4 ID5 D6
Crate confirm (fail) cfgC 2 8 Status - - - - - -
Host request cfgH 1 128+9 - - - - - - -
Crate confirm (ok) cfgC 8 9 ID7 1D8 ID9 1D10 ID11 ID12 ID13
Crate confirm (fail) cfgC 2 9 Status - - - - - -
Host request cfgH 1 128+10 - - - - - - -
Crate confirm (ok) cfgC 8 10 ID14 ID15 ID16 ID17 ID18 ID19 1D20
Crate confirm (fail) cfgC 2 10 Status - - - - - -
Host request cfgH 1 128+11 - - - - - - -
Crate confirm (ok) cfgC 8 11 1D21 D22 D23 1D24 D25 1D26 ID27
Crate confirm (fail) cfgC 2 11 Status - - - - - -
Host writes data to cfgH 8 8 IDO D1 ID2 ID3 1D4 ID5 ID6
crate

Crate confirm cfgC 2 8 Status - - - - - -
Host writes data to cfgH 8 9 ID7 1D8 ID9 ID10 ID11 ID12 ID13
crate

Crate confirm cfgC 2 9 Status - - - - - -
Host writes data to cfgH 8 10 ID14 ID15 ID16 D17 ID18 ID19 ID20
crate

Crate confirm cfgC 2 10 Status - - - - - -
Host writes data to cfgH 8 ih| D21 D22 ID23 D24 ID25 1D26 D27
crate

Crate confirm cfgC 2 11 Status - - - - - -
Power Supply ID String

Host request cfgH 1 128+12 - - - - - - -
Crate confirm (ok) cfgC 8 12 DO ID1 1D2 ID3 1D4 ID5 1D6
Crate confirm (fail) cfgC 2 12 Status - - - - - -
Host request cfgH 1 128+13 - - - - - - -
Crate confirm (ok) cfgC 8 13 1D7 D8 1D9 ID10 ID11 D12 ID13
Crate confirm (fail) cfgC 2 13 Status - - - - - -
Host request cfgH 1 128+14 - - - - - - -
Crate confirm (ok) cfgC 8 14 ID14 ID15 ID16 D17 iD18 ID19 1D20
Crate confirm (fail) cfgC 2 14 Status - - - - - -
Host request cfgH 1 128+15 - - - - - - -
Crate confirm (ok) cfgC 8 15 1D21 1D22 1D23 1D24 ID25 1D26 1D27
Crate confirm (fail) cfgC 2 15 Status - - - - - -

00183.A0 13 CAN-Interface, 5/99

ID Byte | Byte1 | Byte2 | Byte3 | Byte4 | Byte 5 | Byte 6 | Byte 7 | Byte 8

Count

Host writes data to cfgH 8 12 IDO D1 ID2 ID3 ID4 ID5 ID6
crate

Crate confirm cfgC 2 12 Status - - - - - -
Host writes data to cfgH 8 13 ID7 D8 ID9 ID10 ID11 ID12 ID13
crate

Crate confirm cfgC 2 13 Status - - - - - -
Host writes data to cfgH 8 14 ID14 ID15 ID16 ID17 ID18 ID19 1D20
crate

Crate confirm cfgC 2 14 Status - - - - - -
Host writes data to cfgH 8 15 D21 ID22 1D23 ID24 ID25 ID26 D27
crate

Crate confirm cfgC 2 15 Status - - - - - -

Test and Configuration Data (The user may not use this functions)

Host writes data to cfgH 8 127 0 BC(0- DO D1 D2 D3 D4

crate 17)

Crate confirm cfgC 2 127 0 - - - - - -

Host writes data to cfgH | nothing 127 1 D5 D6 D7 D8 D9 D10

crate or8

Crate confirm cfgC 2 127 0 - - - - - -

Host writes data to cfgH | nothing | 127 2 D11 D12 D13 D14 D15 D16

crate or8

Crate confirm cfgC 2-8 127 0 BC DO D1 D2 D3 D4

Crate confirm cfgC | nothing 127 1 D5 D6 D7 D8 D9 D10
or 2-8

Crate confirm cfgC | nothing 127 2 D11 D12 D13 D14 D14 D16
or 2-5

ui: channel number * 16 (0: U/10, 16: U/I1, 32: U/12, ..., 112: U/I7)

Value: 16 bit signed binary data (Voltage or current)

Exp.: 8 bit signed exponent of the values. (If the exponent is -2, the value range is between
-327.68 and +327.67.) Only two different exponents are allowed for each channel: one
for all voltages and one for all currents.

Status: O:
1:

252:
253:

254:

00183.A0

ok
trying to program ,,write protected data without permission

not allowed value (min. value > max. value, min. value > value, max. value <
value)

undefined command
command is not supported by the existing hardware
not allowed byte count

data overrun (a new host write request is received before the crate confirm of the
previous write request is transmitted). The new data will be ignored by the crate. If
there are multiple data overruns, only the first error will be answered; all errors
occuring between the first error and the time the error message is transmitted will
be ignored quiet)

hardware error (eeprom checksum not ok)

hardware error (unable to access the eeprom data)

read-only values

14 CAN:-Interface, 5/99

5. Technical data W-IE-NE-R CAN bus interface

CAN controller type:

Physical Layer:
Transceiver:

CAN connector:

Baudrates:

00183.A0

P80C592 (CAN 2.0A protocol)

differential according to ISO 11898
PCAR82C250, opto-isolated, rise and fall slope control
9-pin DSUB male according to CiA DS 102-1

Pin Line Comment

1 - reserved by CiA
2 (10%) CAN_L CAN_L bus line (dominant low)
3 (9%) GND Ground

4 - reserved by CiA

5 - reserved by CiA

6 -
7(11%) CAN_H CAN_H bus line (dominant high)

8 - reserved by CiA (failure signal)

9 -

* optional connection to 15 pin DSUB female

connector (UEV4020 VME Bins only)

Max. Distance Bit Rate Type
10m 1.6 Mbit/s
40m 1.0 Mbit/s
130 m 500 kbit/s high- speed
270 m 250 kit/s
530 m 125 kbit/s
620 m 100 kbit/s
1300 m 50 kbit/s
3300 m 20 kbit/s low-speed
6700 m 10 kbit/s
10.000 m Skbit/s
15 CAN-Interface, 5/99

Revision History

10.12.98 Documentation: Better explanation of the ui-exponent. (Ko)
21.12.98 Extension CANBUS 1.01 (Monitoring of user supplied temperature sensors.) (K&)
31.05.99 Extension CANBUS 1.02 (Operating Time monitoring)
Documentation: Status Byte 0: VME Sysfail definition was wrong in the manual
28.06.99 Extension of IDstat: Flash/EEprom bits (K&)
27.03.00 Monitoring of fan temperature and external temperature sensors.
17.04.00 Extension CANBUS 1.03 (Output Voltage fine adjustment)
23.04.02 Extension CANBUS 1.04 (Get Crate Status: min. current flags never used, now redefined to

External Overtemperature Error Flags)

00183.A0 16 CAN-Interface, 5/99

