12 Gev startup pre Beam Checklist

Last revised 3/6/14 **Date** ______time _____

This checklist will be performed after every restricted access to Hall A that maintenance is performed

People checking list _____

Left Arm

Spectrometers

- ____Correct angle _____ (not to be used for calculations)
- ____ Check spectrometer for obstructions to movement
- ____ Check Intergen bottles for correct pressure

____ Ensure that Intergen alarm switch is in the normal position and the green light on the front panel is on

- ____ Ensure that 14-degree stop pin is installed (if used)
- ____ Ensure that outer limit stop is installed (if used)
- ____ Minimum/Maximum angles for spectrometer from _____ Deg. To _____ Deg.

Vacuum

- ____ Turbo on at turbo controller in rack # 1H71B01
- ____ Pump valves open at valve controller in rack #1H71B01 channel #2
- ____ Convectron gauges read "0" millitorr
- ____ Cold cathode gauge in rack # 1H71B01 < 5x10-5
- ____ Actual cold cathode reading _____
- ____ Turn off cold cathode gauge
- ____ Ensure that Q1 lead heaters in rack 1H71B08 are on and operating (4 blinking red lights)
- ____Ensure that Q2, Q3 and Dipole lead heaters are on and operating and at lease 40 deg.

Power supplies

Q1:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- _____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power.
- _____Visually check power supply for faults
- _____When all faults have been cleared, ensure that power supply is in remote control
- Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____Visually check power supply for faults
- When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____Visually check power supply for faults
- When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control

Dipole:

____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ Turn on power lever on right upper side of supply
- _____Visually check power supply for faults on supply and at rack # 0D171Q
- ____When all faults have been cleared, Ensure that power supply is in remote control
- ____ Ensure Kepco power supply is on
- ____ Check power supply for proper polarity ____ positive____ negative____
- _____NMR gradient compensation for proper polarity positive_____ negative_____
- ____Bogie power is ON ___Off ____

____ Ensure that the Q3 insulating vacuum pump and auto valve are operational, has sufficient oil and it's the Convectron gauge reads 0

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

____ Ensure that the Q1/Q2 insulating vacuum pump and auto valve is functioning and has sufficient oil

Right Arm

Spectrometers

- ____Correct angle _____ (not to be used for calculations)
- ____ Check spectrometer for obstructions to movement
- ____ Check Intergen bottles for correct pressure
- ____ Ensure that Intergen alarm switch is in the normal position and the green light is on on the front panel
- ____ Ensure that 14-degree stop pin is installed
- ____ Ensure that outer limit stop is installed (if used)
- ____ Minimum/maximum angles for spectrometer _____to____

Vacuum

- ____ Turbo on at turbo controller in rack # 1H72B01
- ____ Pump valves open at valve controller in rack # 1H72B01 channel #2
- ____ Convectron gauges read "0" millitorr
- ____ Cold cathode gauge in rack # 1H72B01 < 5x10-5
- ____ Actual cold cathode reading ___
- ____ Turn off cold cathode gauge
- Ensure that Q1 lead heaters in rack 1H72B08 are on and operating (4 blinking red lights)
- ____ Ensure that Q2, Q3 and Dipole lead heaters are on and operating and at least 40 deg.

Power supplies

Q1:

____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____Visually check power supply for faults.
- _____When all faults have been cleared, Ensure that power supply is in remote control.
- Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____Visually check power supply for faults
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____Visually check power supply for faults.
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

Dipole:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- ____ Turn on power lever on right upper side of supply.
- _____Visually check power supply for faults on supply and at rack #OD172Q.
- _____When all faults have been cleared, Ensure that power supply is in remote control.
- ____ Ensure Kepco power supply is on
- ____ Check power supply for proper polarity ____ negative_____
- _____NMR gradient compensation for proper polarity positive_____ negative_____
- ____Bogie power is ON ___Off ____

____ Ensure that the Dipole automatic valve is operational and open, that the Convectron gauge reads 0 and that the backing pump is on, has sufficient oil

____ Ensure that the Q3 insulating vacuum pump and auto valve are operational, has sufficient oil and it's the Convectron gauge reads 0

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

____ Ensure that the Q1/Q2 insulating vacuum pump and auto valve is functioning and has sufficient oil

Left Arm (from the computer)

Spectrometer controls

- ____ Bogie control screen checked for operation (do not move)
- ____ Check movement of left collimator for operation at 3 positions
- ____ Check left angle camera for movement in both directions

Magnet controls

Q1

- ____ Q1 full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Q1 to 80 slm as read from the Hall A Tools page ____ Actual lead flows, A_____ B_____

Q2

- ____ Q2 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q2 to 60 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

D1

- ____ Dipole full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Dipole to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

Q3

- ____ Q3 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q3 to 100 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

Right Arm (from the computer)

Spectrometer controls

- ____ Bogie control screen checked for operation (do not move)
- ____ Check movement of right collimator for operation at 3 positions
- ____ Check right angle camera for movement in both directions

Magnet controls

Q1

- ____ Q1 full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Q1 to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

Q2

- ____ Q2 full of liquid (80%) actual reading from computer ____
- ____ Open lead flows on Q2 to 60 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

D1

- ____ Dipole full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Dipole to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

Q3

- ____ Q3 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q3 to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows, A_____ B_____

Controls check from the computer console

- ____ Pull up the Hall A tools page
- ____ Ensure that all of the lead flows are in the green
- ____ Ensure that all liquid levels are in the green
- ____ Ensure that all polarities are correct
- ____Using the current button open the control page to left Q1
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps
- _____Using the current button open the control page to left Q2
- Clear all faults and turn on magnet with correct polarity Ramp magnet to 100 amps
- ____Using the current button open the control page to left Q3 ____Clear all faults and turn on magnet with correct polarity
- ____Clear an faults and turn on magnet w ____Ramp magnet to 100 amps
- _____Using the current button open the control page to left Dipole
- ___Clear all faults and turn on magnet with correct polarity ___Ramp magnet to 100 amps
- _____Using the current button open the control page to right Q1
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps
- ____Using the current button open the control page to right Q2
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps
- _____Using the current button open the control page to right Q3
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps
- _____Using the current button open the control page to right Dipole
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps
- ____ Input 1 GeV/c for both spectrometers
- ____ Ensure that all magnets lock in for the input momentum
- ____list magnets that do not _____
- ____If used open the controls page to Big Bite
- ____Clear all faults and turn on magnet with correct polarity
- ____Ramp magnet to 100 amps

Target

- ____Windows functional
- ____ Cctv cameras "on" and focused
- ____Target light "on"
- ___Backing pump "on" at pump
- ____Ensure roughing is closed
- _____Turbo "on" at rack # 1H75B09
- ____Turbo valve "open" at rack # 1H75B09 channel # 1 upper & #2 lower
- ____Ensure target Convectron set point is 5 torr
- ____Gauges operational
- ____Convectron "0" millitorr at rack # 1H75B09
- <u>Cold cathode < 5x10-4</u> at rack # 1H75B08 actual reading_____

Exit beam tube

- ____Diffuser cooler on
- ____Diffuser water level ok
- ____Close flow valve and observe flow meter (drops to 0)
- ____open flow valve and observe flow meter (rises to =/>1 GPM) Actual GPM_____
- ____Backing pump is "on" and operational
- ____Valve "open" at pump
- _____Turbo "on" at rack # 1H75B09
- ____Gauges operational
- Convectron "<5" millitorr at rack # 1H75B09 actual reading_____
- ____magnetic shielding installed (if necessary)

Entrance beam tube

____Ensure that the downstream (beam line girder) turbo is on and running

Ensure that the downstream (beam line girder) cold cathode gauge is on and at lease 5x10-6 actual reading_____

- ____Ensure that there is cooling water flow to the Moeller Dipole
- ____Ensure that the upstream (Moller) turbo is on and running

Ensure that the upstream (Moller) cold cathode gauge is on and at lease 5x10-6 actual reading_____

____Instrument air compressor functioning normally

____All beam line vacuum valves "open" (VBV1H04 B and C upstream and down stream of the target visually checked at the valve)

___Call MCC @ 7045, get the name of the person you talked to _____and say "I am doing the Hall A pre beam checklist, Please ensure that the Hall A beam line valves are set to close" after they say that they are, say "I am turning the control key from maintenance to operational are you ready" after they say yes, turn key and tell them "you have control could you please open the valves so that we can verify operability make an e-log entry"

BigBite

- ____Ensure Big Bite magnet is on the forward stops
- ____Ensure that Big Bite detector guards are removed
- ____Ensure that the field read back is working on the Big Bite GUI
- ____Ensure Big Bite magnet beacons are operational

Hall

- ____All interlocks in rack # 1H75B08 indicate green
- ____ Ensure that all 4 Moller quad power supply doors and panels are closed and secured
- ____ Check 4 Moeller power supplies for on and in remote
- ____ Ensure installation of Ion chambers at raster, and target
- ____ Correct LCW flow and pressure (115 psi supply and <50 psi return) actual ____/
- ____ Cctv monitors at X terminal off
- ____ Clear of unnecessary equipment
- ____ Man lift and Forklift in truck ramp.

____ Ensure that all lifting slings and safety harnesses are correctly stored and that the storage cage is at least 90 deg from the beam dump and at least 60 ft from the target

- ____ Perform pre sweep of run safe boxes.
- ____ Move Left spectrometer stairs clear of lower balcony.

____ Ensure polar crane is positioned over the entrance beam pipe, and that power is off at the power disconnect switch

____ Ensure that spectrometer entrance window guards are removed

____ Ensure that spectrometer exit window guards are removed

____ Ensure that detector VDC covers are removed

____ Ensure that target window guards are removed

____ Ensure operability of shield house doors

____ Deliver checklist to operations coordinator

_____Make the following entries into the HALOG "Checklist Complete and Target Window and spectrometer Guards are Removed" "Angle limits for the Left Spectrometer are _____ to ____" "Angle limits for the Right Spectrometer are _____ to ____" "The tech on call at startup is ______" Note any outstanding issues not completed on the checklist Note any special requirements or restrictions

Name of person checklist was delivered to _____