Cryo Target Pre Beam Checklist

Last revised 03-28-2017 **Date _____time _____**

This checklist will be performed after every restricted access to Hall A that maintenance is performed

Person(s) Completing Checklist

Left-HRS

Spectrometers

- Current L-HRS angle (not to be used for calculations)
- ____ Check spectrometer for obstructions to movement
- ____ Check Intergen bottles for correct pressure
- ____ Ensure that Intergen alarm switch is in the normal position and the green light on the front panel is on
- ____ Ensure that 14-degree stop pin is installed (if used)
- ____ Ensure that outer limit stop is installed (if used)
- ____ Minimum/Maximum angles for spectrometer from _____ to ____ degrees.

Vacuum

- ____ Turbo on at turbo controller in rack # 1H71B01
- ____ Pump valves open at valve controller in rack # 1H71B01 channel #2
- ____ Convectron gages read "0" millitorr rack # 1H71B01
- ____ Cold cathode gauge in rack # 1H71B01 < 5x10-5
- ____ Actual cold cathode reading _____

PLEASE MAKE SURE ALL TEMP. READOUTS ARE IN FAHRENHEIT AND NOT CELSIUS

- Ensure that Q2 lead heaters in rack 1H71B07 are on and operating and at least 40° F Actual lead temperatures left____ right____
- Ensure that Q3 lead heaters in rack 1H71B08 are on and operating and at least 40° F Actual lead temperatures left____ right____
- Ensure that Dipole lead heaters in rack 1H71Q are on and operating and at least 40° F Actual lead temperatures left____ right____

____ Bogie power is ON ____ off ____

Power Supplies (L-HRS)

MAKE SURE LCW IS ON TO ALL POWER SUPPLIES BEFORE POWERING ON

Q1:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

_____ Unlock power disconnect switch and turn on AC power

- _____ Visually check power supply front panel for faults
- ____ When all faults have been cleared, Ensure that power supply is in remote control (light ON= remote)

Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- ____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults
- ____ When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults
- _____ When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control

Dipole:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on power lever on right upper side of supply
- _____ Visually check power supply for faults on supply and at rack #
- ____ When all faults have been cleared, Ensure that power supply is in remote control
- ____ Ensure Kepco power supply is on in rack # 1H71B06
- ____ Check position of polarity switch in rack # 1H71B06 positive____ negative____
- _____NMR gradient compensation for proper polarity positive____ negative____ (Dipole balcony)
- ____ Ensure that the Q3 insulating vacuum pump is on and has sufficient oil
- ____ Ensure the Q3 automatic valve is o and open and it's the Convectron gage reads 0
- ____ Ensure that the Q2 insulating vacuum pump/ blower is on and has sufficient oil
- ____ Ensure the Q2 automatic valve is operational and open and it's the Convectron gage reads 0

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

Right-HRS

Spectrometers

- ____ Current R-HRS angle _____ (not to be used for calculations)
- ____ Check spectrometer for obstructions to movement
- ____ Check Intergen bottles for correct pressure
- ____ Ensure that Intergen alarm switch is in the normal position and the green light is on on the front panel
- ____ Ensure that 14-degree stop pin is installed
- ____ Ensure that outer limit stop is installed (if used)
- ____ Minimum/maximum angles for spectrometer ______to_____degrees.

Vacuum

- ____ Turbo on at turbo controller in rack # 1H72B01
- ____ Pump valves open at valve controller in rack # 1H72B01 channel #2
- ____ Convectron gages read "0" millitorr in rack # 1H72B01
- ____ Cold cathode gauge in rack # 1H72B01 < 5x10-5
- ____ Actual cold cathode reading _____

PLEASE MAKE SURE ALL TEMP. READOUTS ARE IN FAHRENHEIT AND NOT CELSIUS

- Ensure that Q2 lead heaters in rack 1H72B08 are on and operating and at least 40° F Actual lead temperatures left____ right____
- Ensure that Q3 lead heaters in rack 1H72B07 are on and operating and at least 40° F Actual lead temperatures left____ right____
- Ensure that Dipole lead heaters in rack 1H72Q are on and operating and at least 40° F Actual lead temperatures left____ right____

___ Bogie power is ON ____ Off ____

Power Supplies (R-HRS)

MAKE SURE LCW IS ON TO ALL POWER SUPPLIES BEFORE POWERING ON

Q1:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

_____ Unlock power disconnect switch and turn on AC power

- _____ Visually check power supply front panel for faults
- ____ When all faults have been cleared, Ensure that power supply is in remote control (light ON= remote)

Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- ____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- ____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults.
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

Dipole:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on power lever on right upper side of supply.
- _____ Visually, check power supply for faults on supply and at rack #OD172Q
- ____ When all faults have been cleared, Ensure that power supply is in remote control
- ____ Ensure Kepco power supply is on in rack # 1H72B06
- ____ Check position of polarity switch in rack # 1H72B06 positive____ negative____
- _____NMR gradient compensation for proper polarity positive____ negative____ (Dipole balcony)

____ Ensure that the Dipole automatic valve is operational and open, that the Convectron gage reads 0 and that the backing pump is on, has sufficient oil

____ Ensure that the Q3 automatic valve is operational and open, that the Convectron gage reads 0 and that the backing pump is on, and has sufficient oil

____ Ensure that the Q2 insulating vacuum pump is on, and has sufficient oil

____ Ensure the Q2 automatic valve is operational and open and it's the Convectron gage reads 0

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

Left-HRS (from the computer)

Spectrometer controls

- ____ Bogie controls checked for operation (do not move)
- ____ Check movement of left collimator for operation at 3 positions (if used)
- ____ Check left angle camera for movement in both directions

Magnet controls

- Q1 (check at magnet and LCW lines)
- ____ Ensure LCW is on to magnet
- ____ Supply pressure _____ psi (must be >100psi)
- Return pressure psi (must be <50psi)

Q2

- ____ Q2 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q2 to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

D1

- Dipole full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Dipole to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

Q3

- Q3 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q3 to 100 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

Right-HRS (from the computer)

Spectrometer controls

- ____ Bogie controls checked for operation (do not move)
- ____ Check movement of right collimator for operation at 3 positions (if used)
- ____ check right angle camera for movement in both directions

Magnet controls

- Q1 (check at magnet and LCW lines)
- ____ Ensure LCW is on to magnet
- ____ Supply pressure _____ psi (must be >100psi)
- ____ Return pressure _____ psi (must be <50psi)

Q2

- ____ Q2 full of liquid (80%) actual reading from computer _____
- ____Open lead flows on Q2 to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

D1

- Dipole full of liquid (60%) actual reading from computer _____
- ____ Open lead flows on Dipole to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

Q3

- ____ Q3 full of liquid (80%) actual reading from computer _____
- ____ Open lead flows on Q3 to 80 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B_____

Controls check from the computer console

- ____ Pull up the Hall A tools page
- ____ Ensure that all of the lead flows are in the green
- ____ Ensure that all liquid levels are in the green
- ____ Ensure all magnets on L-HRS are the same ____ negative or ____ positive
- ____ Ensure all magnets on R-HRS are the same ____ negative or ____ positive
- _____ Using the current button open the control page to left Q1
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to left Q2
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to left Q3
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to left Dipole
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to right Q1
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to right Q2
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to right Q3
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ Using the current button open the control page to right Dipole
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 50 amps
- _____ input .5 GeV for both spectrometers
- ____ Ensure that all magnets lock in for the input momentum
- ____ List magnets that do not ______

Target

- ____ Windows on & functional
- ____ CCTV cameras "on" and focused
- ____ Target light "on" Control located online at HAREBOOT 6 channel 3 (hlauser)
- ____ Backing pump "on" at pump
- ____ Ensure roughing is closed
- ____ Turbo "on" at rack # 1H75B09 (at least one turbo should be on depending on target)
- ____ Turbo valve "open" at rack # 1H75B09 channel # 1 upper and/or #2 lower
- Ensure target convectron gage is operational in rack # 1H75B09
- ____ Ensure target convectron set point is 5 torr
- ____ Convectron "0" millitorr at rack # 1H75B09
- ____ Cold cathode < 5x10-4 at rack # 1H75B08
- ____ Actual cold cathode reading _____

Exit beam tube

- ____ Diffuser cooler on
- ____ Diffuser water level ok
- ____ Close flow valve and observe flow meter (drops to 0)
- ____ Open flow valve and observe flow meter (rises to 1 GPM) Actual GPM_____
- ____ Backing pump is "on" and operational
- ____ Valve "open" at pump
- ____ Turbo "on" at rack # 1H75B09
- ____ Convectron gage operational
- ____ Convectron "<5" millitorr at rack # 1H75B09
- ____ Actual convectron gage reading ____
- ____ Magnetic shielding installed (if necessary)

Entrance beam tube

- ____ Ensure that beam line girder turbo and backing pump are on and running
- ____ Ensure that beam line girder turbo fan is on
- ____ Ensure backing pump has sufficient oil, valve to turbo is open and automatic valve is operational
- _____ Verify cooling water flow to the Moeller Dipole (feel water line to determine if flow is present)
- _____ Verify LCW valves to 4 Moeller Quads are open
- ____ Ensure turbo upstream of Moeller and backing pump are on and running
- ____ Ensure Moeller turbo fan is on
- ____ Ensure backing pump has sufficient oil, valve to turbo is open and automatic valve is operational

____ Instrument air compressor functioning normally (this can be done by observing the compressor function [located near the flame lockers] or checking to see if the Hall have compressed air near the pivot)

____ Call MCC (x7048), get the name of the person you talked to ______ and say "I am doing the Hall A pre beam checklist, Please Ensure that the Hall A beam line valves are set to close" after they say that they are, say "I am turning the control key from **MAINTENANCE to OPERATIONAL** are you ready" after they say yes, turn key and tell them "you have control could you please open the valves so that we can verify operability and make an e-log entry"

____Actuate the following valves; __VBV1C20, __VBV1C20A, __VBV1H00, __VBV1H00A, __ VBV1H00B, __ VBV1H04B & __VBV1H04C.

____ Ensure all beam line vacuum valves are "OPEN" (visually check VBV1H04 B and C which are upstream and downstream of target chamber)

Hall

- ____ All interlocks in rack # 1H75B08 indicate green
- ____ Ensure that all **4** Moeller power supplies for on and in remote
- ____ Ensure installation of Ion Chambers at Compton, Moeller, and Target Chamber
- ____ Correct LCW flow and pressure (>/=110 psi supply and <50 psi return)
- ____ CCTV monitors at X terminal off

____ Walk to entire beamline clear it of all unnecessary trash, tools and equipment; make sure all guards are on and in place

- ____ Clear the beam line balcony of unnecessary tools, equipment and trash.
- ____ Clear the pivot area both HRS links of unnecessary tools, equipment and trash.
- ____ Clear the left and right power supply balconies of unnecessary tools, equipment and trash.
- ____ Clear the left and right detector platforms of unnecessary tools, equipment and trash.
- ____ Clear the hall floor of unnecessary tools, equipment and trash
- ____ Scissor Lift and Forklift near truck ramp
- ____ Move JLG inside truck ramp

____ Ensure that all lifting slings and safety harnesses are correctly stored and that the storage cage is at least 90 deg from the beam dump and at least 60 ft from the target

Perform pre sweep of run safe boxes [15 totals]. (6-along wall, 3-L-HRS, 3-R-HRS, 1-Compton area, 1-personnel p-way, 1-top truck ramp door]

- ____ Move Left spectrometer stairs clear of lower balcony.
- ____ Ensure raster air conditioner is "ON"

____ Ensure polar crane is positioned over the entrance beam pipe, and that power is off at the power disconnect switch

- ____ Ensure that spectrometer entrance window guards are removed
- ____ Ensure that spectrometer exit window guards are removed
- ____ Ensure that detector VDC covers are removed
- ____ Ensure that target window guards are removed

____ Ensure operability of shield house doors

____ Deliver checklist to work coordinator

Make the following entries into the HALOG	
---	--

"Checklist Complete"

"Target Windows and HRS Entrance and Exit Window Guards are removed"

"L-HRS starting angle is _____ degrees"

"R-HRS starting angle is _____ degrees"

"L-HRS External Sieve is _____"

"R-HRS External Sieve is _____"

"The tech on call at startup is _____

***Note any outstanding issues not completed on the checklist ***Note any special requirements or restrictions

Name of person checklist was delivered to ______.