Septa/Cryo Target Pre Beam Checklist

 Last revised 3/25/10
 Date ______time _____

This checklist will be performed after every restricted access to Hall A that maintenance is performed

People checking list _____

Left Arm

Spectrometers

Check Intergen bottles for correct pressure
Ensure that Intergen alarm switch is in the normal position and the green light is on on the front panel

Vacuum

- ____ Turbo on at turbo controller in rack # 1H71B01
- ____ Pump valves open at valve controller in rack # 1H71B01 channel #2
- ____ Convectron gages read "0" millitorr
- Cold cathode gauge in rack # 1H71B01 < 5x10-5
- ____ Actual cold cathode reading _____
- ____ Entrance & exit vacuum windows functional
- ____ Ensure that Q1 lead heaters in rack 0Q172Q-C2 are on and operating

(4 blinking red lights)

- ____ Ensure that Q2, lead heaters are on, operating and at least 40 deg.
- ____ Ensure that Q3 lead heaters are on, operating and at least 40 deg.
- ____ Red rotating beacons on

Left Arm *Power supplies* Q1:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ When all faults have been cleared, Ensure that power supply is in remote control

Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults
- ____ When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control

Dipole:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ Turn on power lever on right upper side of supply
- _____ Visually check power supply for faults on supply and at rack #
- _____ When all faults have been cleared, Ensure that power supply is in remote control
- ____ Ensure Kepco power supply is on
- ____ Check power supply for proper polarity positive____ negative____
- ____ NMR gradient compensation for proper polarity positive_____ negative_____

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- ____ Turn on both sets of three pole breakers located on power supply
- ____ Visually check power supply for faults
- _____ When all faults have been cleared, lift lever on lower right side of supply
- ____ Ensure that power supply is in remote control
- ____ Ensure that the Q3 insulating vacuum pump is functioning and has sufficient oil
- ____ Ensure the Q3 automatic valve is operational and open and it's the Convectron gage reads 0

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

Right Arm

Spectrometers

Check Intergen bottles for correct pressure

____ Ensure that Intergen alarm switch is in the normal position and the green light is on on the front panel

Vacuum

- ____ Turbo on at turbo controller in rack # 1H71B01
- ____ Pump valves open at valve controller in rack # 1H71B01 channel #2
- ____ Convectron gages read "0" millitorr
- ____ Cold cathode gauge in rack # 1H71B01 < 5x10-5
- ____ Actual cold cathode reading _____
- ____ Ensure that Q1 lead heaters in rack 0Q172Q-C2 are on and operating (4 blinking red lights)
- ____ Ensure that Q2, lead heaters are on, operating and at lease 40 deg.
- ____ Ensure that Q3 lead heaters are on, operating and at least 40 deg.
- ____ Ensure that Dipole lead heaters are on, operating and at least 40 deg.
- ____ Red rotating beacons on

Right Arm *Power supplies* **Q1:**

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ When all faults have been cleared, Ensure that power supply is in remote control.

Q2:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

Dipole:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- ____ Unlock power disconnect switch and turn on AC power
- _____ Turn on power lever on right upper side of supply.
- _____ Visually, check power supply for faults on supply and at rack #OD172Q.
- _____ When all faults have been cleared, Ensure that power supply is in remote control.
- ____ Ensure Kepco power supply is on
- ____ Check power supply for proper polarity _____ negative_____
- ____ NMR gradient compensation for proper polarity positive_____ negative_____

Q3:

_____ Visual inspection of main current leads, dump resistor, and lead flags (for condition, visual shorts, etc.)

- ____ Ensure that all doors and panels are closed and secured
- _____ Unlock power disconnect switch and turn on AC power
- _____ Turn on both sets of three pole breakers located on power supply
- _____ Visually check power supply for faults.
- _____ When all faults have been cleared, lift lever on lower right side of supply.
- ____ Ensure that power supply is in remote control

____ Ensure that the Dipole automatic valve is operational and open, that the Convectron gage reads 0 and that the backing pump is on, has sufficient oil

____ Ensure that the Q3 automatic valve is operational and open, that the Convectron gage reads 0 and that the backing pump is on, and has sufficient oil

____ Ensure that spectrometer turbo backing pump is on, has sufficient oil and that the automatic valve is operational

Left Arm <i>Magnet controls</i> Q1	
	Q1 full of liquid (60%) actual reading from computer Open lead flows on Q1 to 80 slm as read from the Hall A Tools page Actual lead flows A B
Q2	Q2 full of liquid (80%) actual reading from computer Open lead flows on Q2 to 60 slm as read from the Hall A Tools page Actual lead flows A B
D1 	Dipole full of liquid (60%) actual reading from computerOpen lead flows on Dipole to 80 slm as read from the Hall A Tools pageActual lead flowsAB
Q3	Q3 full of liquid (80%) actual reading from computer Open lead flows on Q3 to 100 slm as read from the Hall A Tools page Actual lead flows A B

Right Arm

Magnet controls

- Q1 Q1 full of liquid (60%) actual reading from computer _____
- Open lead flows on Q1 to 60 slm as read from the Hall A Tools page
 Actual lead flows A_____ B____
- Q2
 - _____ Q2 full of liquid (80%) actual reading from computer ______
- ____ Open lead flows on Q2 to 60 slm as read from the Hall A Tools page
- ____ Actual lead flows A_____ B____
- D1
- Dipole full of liquid (60%) actual reading from computer _____
 Open lead flows on Dipole to 80 slm as read from the Hall A Tools page
- Actual lead flows A_____ B____
- Q3
- ____ Q3 full of liquid (80%) actual reading from computer ____
- Open lead flows on Q3 to 80 slm as read from the Hall A Tools page
 Actual lead flows A_____ B____
- Controls check from the computer console

- ____ Pull up the Hall A tools page
- ____ Ensure that all of the lead flows are in the green
- ____ Ensure that all liquid levels are in the green
- ____ Ensure that all polarities are correct
- ____ Using the current button open the control page to left Q1
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- ____ Using the current button open the control page to left Q2
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- ____ Using the current button open the control page to left Q3
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- Using the current button open the control page to left Dipole
 Clear all faults and turn on magnet with correct polarity
- ____ Clear an faults and turn on magnet with correct j
- ____ Ramp magnet to 100 amps
- ____ Using the current button open the control page to right Q1
- ____ Clear all faults and turn on magnet with correct polarity Ramp magnet to 100 amps
- _____ Using the current button open the control page to right Q2
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- ____ Using the current button open the control page to right Q3
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- ____ Using the current button open the control page to right Dipole
- ____ Clear all faults and turn on magnet with correct polarity
- ____ Ramp magnet to 100 amps
- ____ Open the controls page to Big Box power supply for the septum
- ____ Clear all faults and turn on magnet
- ____ Ramp magnet to 100 amps

Target

- ____ Cctv cameras "on" and focused
- ____ Target light "on"
- ____ Backing pump "on" at pump
- ____ Ensure roughing is closed
- ____ Turbo "on" at rack # 1H75B09
- ____ Turbo valve "open" at rack # 1H75B09 channel # 1 upper & #2 lower
- ____ Ensure target convectron set point is 5 torr
- ____ Gages operational
- ____ Convectron "0" millitorr at rack # 1H75B09
- ____ Cold cathode < 5x10-4 at rack # 1H75B08
- ____ Actual cold cathode reading _____

Exit beam tube

- ____ Diffuser cooler on
- ____ Diffuser water level ok
- _____ close flow valve and observe flow meter (drops to 0)
- _____ open flow valve and observe flow meter (rises to 1 GPM) Actual GPM______
- ____ Backing pump is "on" and operational
- ____ Valve "open" at pump
- ____ Turbo "on" at rack # 1H75B09
- ____ Gages operational
- ____ Convectron "<5" millitorr at rack # 1H75B09
- ____ Actual convectron gage reading _____

Entrance beam tube

- ____ Ensure that beam line girder turbo is on and running
- ____ Ensure that there is cooling water flow to the Moeller Dipole
- ____ Ensure that E P turbo is on and running
- ____ Instrument air compressor functioning normally

_____ All beam line vacuum valves "open" (VBV1H04 B and C upstream and down stream of the target visually checked at the valve)

____ Call MCC, get the name of the person you talked to ______ and say "I am doing the Hall A pre beam checklist, Please Ensure that the Hall A beam line valves are set to close" after they say that they are, say "I am turning the control key from maintenance to operational are you ready" after they say yes, turn key and tell them "you have control could you please open the valves so that we can verify operability make an e-log entry"

Septum magnet

- ____ Ensure that there is cooling water flow to the septum magnet
- ____ Ensure that the septum magnet electrical guards are all on place
- _____ note the position of the sieves in the downstream target box In _____ or Out _____
- ____ Ensure that there is cooling water flow Big Box power supply
- ____ Ensure that the septum magnet electrical guards are all on place
- ____ Ensure that the magnetic field bounty and signs are in place around septum
- ____ Ensure that the magnetic field warning light is operational
- ____ note the position of the shutter in the left collimator In _____ or Out _____
- _____ note the position of the shutter in the right collimator In _____ or Out _____
- ____ Ensure that the septum magnet is on and operational

Hall

- ____ All interlocks in rack # 1H75B08 indicate green
- ____ Check 3 Moeller power supplies for on and in remote
- ____ Ensure installation of Ion chambers at EP, and target
- ____ Correct LCW flow and pressure (120 psi supply and 40 psi return)
- ____ Cctv monitors at X terminal off
- ____ Clear of unnecessary equipment
- ____ Man lift and Forklift in truck ramp.
- ____ Ensure that all lifting slings and safety harnesses are correctly stored and that the storage cage is at least 90 deg from the beam dump and at least 60 ft from the target
- ____ Perform pre sweep of run safe boxes.
- ____ Ensure polar crane is positioned over the entrance beam pipe, and that power is off at the power disconnect switch
- **____** Ensure that detector VDC covers are removed (not for this experiment)
- ____ Ensure operability of shield house doors
- ____ Deliver checklist to work coordinator

____ Make the following entries into the HALOG

"The tech on call at startup is _____"

Sieve positions are In ____ or Out ____

Left collimator In ____ or Out _____

Right collimator In _____ or Out _____

Note any outstanding issues not completed on the checklist

Note any special requirements or restrictions

Name of person checklist was delivered to _____