The SeaQuest experiment at FNAL

Dr. Markus Diefenthaler (UIUC)

The SeaQuest collaboration

- Abilene Christian University: Ryan Castillo, Michael Daughertiy, Donald Isenhower, Noah Kitts, Lacey Medlock, Noah Shutty, Rusty Towell, Shon Watson, Ziao Jai Xi
- Academia Sinica: Wen-Chen Chang, Ting-Hua Chang, Shiu Shiuan-Hao
- Argonne National Laboratory: John Arrington, Donald F. Geesaman (co-spokesperson), Kawtar Hafidi, Roy Holt, Harold Jackson, David Potterveld, Paul E. Reimer (co-spokesperson), Brian Tice
- University of Colorado: Ed(ward) Kinney, Joseph Katich, Po-Ju Lin
- Fermi National Accelerator Laboratory: Chuck Brown, Dave Christian, Su-Yin Wang, Jin-Yuan Wu
- University of Illinois: Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, Dhyaanesh Mullagur, R. Evan McClellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Mariusz Witek, Yangqiu Yin
- KEK: Shin'ya Sawada

- Los Alamos National Laboratory: Gerry Garvey, Xiaodong Jiang, Andreas Klein, David Kleinjan, Mike Leitch, Kun Liu, Ming Liu, Pat McGaughey, Joel Moss
- University of Maryland: Betsy Beise, Yen-Chu Chen, Kazutaka Nakahara
- University of Michigan: Christine Aidala, McKenzie Barber, Catherine Culkin, Vera Loggins, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh(ua) Rubin, Matthew Wood
- Mississippi State University: Lamiaa El Fassi
- National Kaohsiung Normal University: Rurngsheng Guo
- RIKEN: Yoshinori Fukao, Yuji Goto, Atsushi Taketani, Manabu Togawa
- Rutgers University: Ron Gilman, Ron Ransome, Arun Tadepalli
- Tokyo Tech: Shou Miyaska, Kei Nagai, Kenichi Nakano, Shigeki Obata, Florian Sanftl, Toshi-Aki Shibata
- Yamagata University: Yuya Kudo, Yoshiyuki Miyachi, Shumpei Nara

The inner structure of the nucleon

bound state of the strong interaction

relativistic quarks that exchange gluons

gluons radiate off gluons or quark antiquark pairs

experimental investigation in Drell-Yan

unique sensitivity to antiquarks

SeaQuest – Drell-Yan experiment at FNAL

The Standard Model of Particle Physics

Fundamental interactions among fundamental (elementary) particles:

	FERMION	NS spi	itter constitution = $1/2$, $3/2$	uents , 5/2,				in an		BC	OSONS	force carri spin = 0, 1	ers , 2,	
Leptons spin =1/2 Quarks			(S spir	n =1/2	Structure within				Unified Electroweak spin = 1 Strong (color) spin =1					
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass	Electric charge	Quet	the Atom		Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric
VL lightest neutrino*	(0-0.13)×10 ⁻⁹	0	U up	0.002	2/3	Size < 10 ⁻	¹⁹ m	ð	Y photon	0	0	g	0	0
e electron	0.000511	-1	d down	0.005	-1/3				W7	80.39	-1	Color Charge		
VM middle neutrino*	(0.009-0.13)×10 ⁻⁹	0	C charm	1.3	2/3	Nucleus Size = 10 ⁻¹⁴ m	a a	Electron Size < 10 ⁻¹⁸ m	W ⁺	80.39	+1	Only quarks and g (also called "color interactions, Each	luons carry "str charge") and c quark carries ti	rong charge an have str
μ muon	0.106	-1	S strange	0.1	-1/3	e	a		W bosons	01 100	0	color charge. The	e charges have	e nothing to
VH heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	top	173	2/3		b b	Neutron	Z boson	91,100	0	charged particles i	nteract by exch	anging pho
T tau	1.777	-1	b bottom	4.2	-1/3			Proton	and the second second			interact by exchan	ging gluons.	log particio.
Spin is the intrins unit of angular mo Electric charges is 1.60×10 ⁻¹⁹ cou The energy unit of electron in crossis (remember E = m the proton is 0.93 Neutrinos Neutrinos are pro-	ic angular momentum of mentum where $\hbar = \hbar/2\pi$, are given in units of the lombs. If particle physics is the e ng a potential difference c^2_3 where 1 GeV = 10 ⁹ 8 GeV/c ² = 1.67×10 ⁻²⁷ k duced in the sun, superm	particles. S = 6.58×10 ⁻² proton's cha electronvolt (r of one volt V =1.60×10' (g.	pin is given in unit ¹⁵ GeV s =1.05×10 rge. In SI units the eV), the energy ga . Masses are give ⁻¹⁰ joule. The mas rs. accelerator	is of ħ, which is) ⁻³⁴ J s. electric charge ined by one en in GeV/c ² is of The s	s the quantum e of the proton strengths of the interactions (for	Size = 10 ⁻¹⁰ m If the pr 10 cm a would b entire at Propert ces) are shown relative to the	oton and neutrons in this pict. cross, then the quarks and ele less than 0.1 mm in size an om would be about 10 km ac ies of the Intera strength of the electromagnet	ure were lectrons d the ross. actions ic force for two u quarks separated	hadrons. This ci color-charged co energy in the col additional quark- are the particles Two types of hat many types of bat by the specified distance	onfinement (bini onstituents. As c for-force field be antiquark pairs. seen to emerge trons have beer aryons observer (ud ma the s. B ⁰	ding) results fr olor-charged tween them in The quarks a b. n observed in J are the proto (s), and omegi ke the proton many types c (db), and η _C (rom multiple exchan particles (quarks an icreases. This energ- ind antiquarks then i nature mesons $q\bar{q}$ a in (uud), antiproton in (uud), antiproton in (uud), antiproton in (uud), antiproton a Ω^- (sss). Quark ch have charge 1 and of mesons are the pi cc). Their charges a	ges of gluons a 1 gluons) move y eventually is combine into ha and baryons qo $\overline{u}\overline{u}\overline{d}$), neutron (arges add in su he neutron cha on π^+ (u \overline{d}), kao re +1, -1, 0, 0 i	imong the apart, the converted i adrons; thes qq. Among i udd), lamb uch a way a irge 0. Amo n K [−] (sū), respectively
collisions, and many other processes. Any produced neutrino can be described as one of three neutrino flavor states ye, yt, yr, or tr, tabelled by the type of charged lepton associated with its production. Each is a defined product main ice bit bit because deficit methods and the state of t					roperty	Gravitational Interaction	Weak Interaction (Electr	Electromagnetic Interaction	Strong Interaction	Vis	Visit the award-winning web feature The Particle ParticleAdventure.c			Adventure : Ing
Value of the and antimatic and the evolution of stars and galaxy structures. Acts on: Acts on: Acts on: Particles experier Matter and Antimatter Acter and Antimatter Particles to puzzles Acts on: Particles experier Particles mediatin				cts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	This chart has been made possible by the gen		by the generous	support of:		
				articles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons		U.S.N	U.S. Department of Ener U.S. National Science Foun awrence Berkeley National La		tion	
				articles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons		Lawrenc			oratory	
a bar over the particle symbol (unless + or – charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z^0 , γ , and $\eta_c = c\overline{c}$ but not $K^0 = d\overline{s}$) are their own antiparticles			nd Si neir	trength at $\begin{cases} 10^{-18} \text{ m} \\ 3 \times 10^{-17} \text{ m} \end{cases}$	10 ⁻⁴¹ 10 ⁻⁴¹	0.8 10 ⁻⁴	1	25 60	620	©2006 Contemporary Physics Education Project. CPEP is a no of teachers, physicists, and educators. For more infor CPEPweb.org			rofit organizati ion see	
Matter and Antimatter For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or – charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., Z ⁰ , γ , and $\eta_c = c\bar{c}$ but not $K^0 = d\bar{s}$) are their own antiparticles.				l by nd neir	articles mediating: trength at $\begin{cases} 10^{-18} \text{ m} \\ 3 \times 10^{-17} \text{ m} \end{cases}$	Graviton (not yet observed) 10 ⁻⁴¹ 10 ⁻⁴¹	W ⁺ W ⁻ Z ⁰ 0.8 10 ⁻⁴	γ 1 1	Gluons 25 60	620	Lawrenc 06 Contemporary of teachers.	e Berkeley Na Physics Education Projec physicists, and educators CPEPweb	tional Labo t. CPEP is a non-; . For more informa .org	

- Higgs mechanism: mass of an elementary particle is dynamically determined by its interaction with the Higgs particle
- open questions: asymmetry of matter and antimatter in the visible universe, dark matter and dark energy in the invisible universe, physics beyond the Standard Model

Physics within the standard model

• The quark-gluon structure of the nucleon:

Quarks spin = 1/2									
Flavor	Approx. Mass GeV/c ²	Electric charge							
U up	0.003	2/3							
d down	0.006	-1/3							
C charm	1.3	2/3							
S strange	0.1	-1/3							

Phys.Rev. C85 (2012) 065202

bound state of the strong interaction

Strong (Strong (color) spin = 1								
Name	Mass GeV/c ²	Electric charge							
g gluon	0	0							

• Nucleon mass arises from quark-gluon dynamics:

most of the mass of in the visible universe is due to the strong interaction

Properties of the nucleon

property	quarks	gluons
momentum (*)	~50%	~50%
mass	~5%	~95%
charge	valence quarks p> = uud> n> = ddu>	-
spin puzzle (*)	30%	~0%

(*) in the infinite momentum frame

Investigation of the nucleon structure

QCD - Quantum Chromodynamics

the theory of the strong interaction

Lattice QCD

calculating observables of the strong interaction using methods of statistical physics Experimental studies of fundamental processes

deep-inelastic scattering, electron-positron annihilation, and the Drell-Yan process

07

The Drell-Yan process

Fundamental (electro-weak) processes

 measure as many hadron species H, h as possible to disentangle quark flavors q

Complimentary processes

Deep-inelastic scattering

Drell-Yan scattering

The Drell-Yan process

: unique sensitivity to sea quarks

q

 \bar{q}

ŴŴ

The Drell-Yan Adventure

Insights into the proton sea

15

SeaQuest probing the proton sea

Nucleons embedded in nuclei

• Do nucleons change their internal properties when embedded in a nucleus?

- confinement influenced by the nuclear medium?
- Is confinement influenced by the nuclear medium?
- Nuclei are well-described by the strong force between protons and neutrons (and no other degrees of freedom).
- Do quarks and gluons play any role in the understanding of nuclear forces?

The EMC effect

New measurements required to distinguish explanations of the EMC effect (e.g., pion excess in nuclei, medium modifications of bound nucleon wave functions, short-range nucleon-nucleon correlations).

The inner structure of a nucleus

nuclear force mediated by meson exchange

• Where are the *nuclear* pions?

The Lam-Tung relation

• **angular dependence** of the Drell-Yan cross-section:

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} \propto 1 + \lambda\cos\left(\theta\right)^2 + \mu\sin\left(2\theta\right)\cos\left(\phi\right) + \frac{\nu}{2}\sin\left(\theta\right)^2\cos\left(2\phi\right)$$

• Lam-Tung relation: $1 - \lambda = 2\nu$

Angular dependence in

measurement in pion DY and proton DY:

• Collinear PDF: only higher order gluon emission can generate deviations

The Boer-Mulders function

transverse-momentum dependent PDF:

- chiral odd, rather exotic in being naive-time-reversal-odd
 - ↔ initial (Drell-Yan) and final state (SIDIS) interactions
 - → single-spin asymmetries
- challenging the concept of factorization and universality

The SeaQuest mission

What is the structure of the nucleon?

- What is $\overline{d} / \overline{u}$?
- What are the origins of the sea quarks?
- What is the high-x structure of the proton?
- How are quark spin and orbital motion correlated?
- What is the structure of nucleonic matter?
 - Where are the *nuclear* pions?
 - Is antishadowing a valence effect?
- Do partons lose energy in cold nuclear matter?
- Do dark photons couple to a dilepton pair?
- Answers from SeaQuest:
 - significant increase in physics increase
 - unique access to sea quarks at high-x

>

The SeaQuest experiment

Fermilab (FNAL)

Superconducting Linac (Part of proposed PIP II project)

Advanced Accelerator Test Area

SeaQuest Accelerator Technology Complex

Test Beam _____ Facility

Linac _

Booster_

Neutrino Beam

To Minnesota

Booster Neutrino Beam

Muon Area

Neutrino Beam To South Dakota (Part of proposed LBNF project)

Main Injector and Recycler

Protons
 Neutrinos
 Muons
 Targets
 R&D Areas

Tevatron (Decommissioned)

Lana.

The SeaQuest Experiment

- continuing a series of high-mass dilepton experiments at FNAL

Fermilab Accelerator Complex

Proton Beam

slow extraction from MI

2x10¹² protons / s for ~4s spills each minute

beam energy: E-866: 800 GeV → E-906: **120 GeV**

 \rightarrow 50x luminosity as E-866 (for same spectrometer rate)

Target Table

liquid target flasks:

H₂, D₂

solid state targets:

C, **Fe**, **W**

empty flask, no target moves between spills

Spectrometer

reused and recycled components

selected updates: new drift chambers, PMT bases for high-rate capability, beam diagnostics, trigger redesign, ...

The SeaQuest spectrometer

The SeaQuest spectrometer

Dimuon reconstruction

Spill Structure

large variations in instantaneous beam intensity → high hit occupancy

beam-line Cherenkov monitor for beam diagnostics:

→ beam diagnostics: measurement of RF-bucket by RF-bucket intensity
 → trigger inhibit: veto on single RF buckets as a function of intensity,
 1/2 beam inhibited due to 10x expected beam/RF-bucket

Status of the analysis

• data taking:

- presentation of first preliminary physics results at APS April meeting
- track and dimuon reconstruction (from small data sample):

Upcoming results

assuming 2 years of running at current luminosity

The global investigation of the nucleon's quark-gluon structure is still an active field.

(Polarized) Drell-Yan measurements are the missing component in the global PDF (TMD) analysis.

Images of the nucleon

- partons within the nucleon:
 - three position coordinates
 - three momentum coordinates
 - hard probe \rightarrow longitudinal direction \rightarrow transverse plane
- their state can be described by Wigner distributions:
 - quantum phase space distribution
 - quasi-probability density (uncertainty principle, not positive definite)
 - equivalent to parton's complete wave function
- projections of Wigner distributions: PDF, TMD, GPD have probabilistic interpretation

Transverse-momentum dependent PDFs (TMDs)

- 3D-densities in momentum space
- Gaussian distributions with a width of ~ 0.6 GeV
- flavor dependence: d-quark TMDs are larger than u-quark TMDs

transversely polarized nucleon:

- u-quarks (d-quarks) moving preferentially to the right (left)
- TMDs are distorted in opposite ways for u and d-quarks
 38

The Sivers TMD

• observed in semi-inclusive DIS measurements off transversely polarized proton target:

$$f_{1T}^{\perp,q}(x,\mathbf{p}_T^2)$$
 -

- rather exotic in being naive-time-reversal-odd
 - ↔ initial state interactions in Drell-Yan process
 - → single-spin asymmetries:

$$A_N^{\mathrm{DY}} \sim f_{1T}^{\perp,q}(x_b) \otimes f_1^{\bar{q}}(x_t)$$

- close relationship to quark orbital angular momentum
- challenging the concept of factorization and universality
 - fundamental prediction:

$$f_{1T}^{\perp,\mathrm{DIS}} = -f_{1T}^{\perp,\mathrm{DY}}$$

- remains to be experimentally tested
- polarized Drell-Yan measurement required

Reestablishing spin at Fermilab

- E-1039: SeaQuest with polarized target (approved)
 - sensitive to Sivers TMD for sea quarks
 - hint for substantial role of sea quark Sivers effect in SIDIS data
 - LANL will provide polarized proton (NH3) target by 2015
- E-1027: SeaQuest with polarized beam (approved)
 - sensitive to beam valence quarks at high-x
 - large effects \rightarrow sign, size, and mayhe shape of Sivers TMD

The Sivers TMD for sea quarks

HERMES measurement: $\frac{d\sigma^h}{dx dy d\phi_S dz d\phi d\mathbf{P}_{h\perp}^2} \propto \ldots + S_T \Big[\sin(\phi - \phi_S) \Big(F_{\mathrm{UT,T}}^{\sin(\phi - \phi_S)} + \varepsilon F_{\mathrm{UT,L}}^{\sin(\phi - \phi_S)} \Big) + \ldots \Big] + \ldots$

The polarized beam project

cost estimate: 10 million USD

design by SPIN@Fermi collaboration

one Siberian Snake in Main Injector

Polarized Drell-Yan experiments

	beam	polarization		favored				
	type	beam	target	quarks	Siv	L _{sea}		
					sign change	size	shape	
COMPASS	π^{-}	×	¥	valence	¥	×	×	×
E-1039	proton	×	✓	sea	×	✓	\checkmark	\checkmark
E-1027	proton	~	×	valence	¥	~	✓	×
Beyond	proton	V	✓	valence + sea	heli a	city, tra nd oth	ansversi er TMDs	ty,

Planned Drell-Yan experiments

Experiment	Particles	Energy (GeV)	$\mathbf{x}_{\mathbf{b}}$ or $\mathbf{x}_{\mathbf{t}}$	Luminosity (cm ⁻² s ⁻¹)	$A_{_{T}}^{\sin\phi_{S}}$	P_{b} or P_{t} (f)	rFOM#	Timeline	
COMPASS (CERN)	π^{\pm} + p [↑]	160 GeV √s = 17	$x_t = 0.2 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2014, 2018	
PANDA (GSI)	$\overline{\mathbf{p}} + \mathbf{p}^{\uparrow}$	15 GeV \sqrt{s} = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	$P_t = 90\%$ f = 0.22	1.1 x 10 ⁻⁴	>2018	
PAX (GSI)	$\mathbf{p}^{\uparrow} + \overline{\mathbf{p}}$	collider $\sqrt{s} = 14$	$x_{b} = 0.1 - 0.9$	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020?	
NICA (JINR)	p [↑] + p	collider \sqrt{s} = 26	$x_{b} = 0.1 - 0.8$	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2018	
PHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider \sqrt{s} = 500	$x_{b} = 0.05 - 0.1$	2 x 10 ³²	0.06	P _b = 60%	3.6 x 10 ⁻⁴	>2018	
SeaQuest (FNAL: E-906)	p + p	120 GeV $\sqrt{s} = 15$	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2015	
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0 – 0.2*	P _t = 88% f = 0.176	0.15	2016	
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	x _b = 0.35 - 0.9	2 x 10 ³⁵	0.04	P _b = 60%	1	2018	
	⁺ 8 cm NH ₃ target $L= 1 \times 10^{36}$ cm ⁻² s ⁻¹ (LH ₂ tgt limited) / $L= 2 \times 10^{35}$ cm ⁻² s ⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / # rFOM = relative lumi * P ² *f ² wrt E-1027 (f=1 for pol p beams)								

W. Lorenzon (U-Michigan) 8/15/2014

The SeaQuest mission

unique laboratory for sea quarks at high-x

- → structure of nucleons and nucleonic matter
- physics running started on February 20th
- → preliminary physics results expected soon
- exciting extensions possible
- → polarized Drell-Yan measurements
- → missing piece in the global spin program
- → unique opportunity for Fermilab