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1.1 Physics Motivation

1.1.1 dn
2: Quark-Gluon Correlations in the Nucleon

To date, extensive work has been done investigating the spinstructure functiong1 within the context of the Feynman
parton model and pQCD. However, far less is known about theg2 structure function. It is known to contain quark-gluon
correlations. It follows from a spin-flip Compton amplitudeand may be written as:

g2
(

x,Q2)= gWW
2

(

x,Q2)+ ḡ2
(

x,Q2) , (1)

wheregWW
2 is the Wandzura-Wilczek term, which may be expressed entirely in terms ofg1 [1]:
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The second term is given as:
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wherehT is the transverse polarization density, andξ is a term arising from quark-gluon correlations. Here,hT is
suppressed by the ratio of the quark massmq to the target massM. Therefore, a measurement of ¯g2 provides access to
quark-gluon interactions inside the nucleon [2].

Consequently, a measurement of bothg1 andg2 allows for the determination of the quantitydn
2, which is formed

as the second moment of a linear combination ofg1 andg2:
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dn
2 also appears as a matrix element of a twist-3 operator in the operator product expansion [3]:

〈P,S| ψ̄q (0)gG+y(0)γ+ψq (0) | P,S〉= 2MP+P+Sxdn
2, (5)

whereG+y = 1√
2
(Bx−Ey). We see from Equations 4 and 5 thatdn

2 is a twist-3 matrix element that measures quark-
gluon interactions.

Recent work has shown [4, 5] that at highQ2, dn
2 is seen as a color Lorentz force averaged over the volume of the

nucleon. This is given by the expression of the transverse (color) force on the active quark immediately following its
interaction with a virtual photon:

Fy (0)≡−
√

2
2P+

〈P,S| ψ̄q (0)G+y(0)γ+ψq (0) | P,S〉=−1
2

M2dn
2. (6)

This theoretical interpretation reveals howg2 and subsequentlydn
2 will allow us to examine the color interactions of

the constituents inside the nucleon.
While bag and soliton model calculations ofd2 for the neutron yield numerical values consistent with those of

lattice QCD, current experimental data differs by roughly two standard deviations (see the highestQ2 data in Figure 1).
One of the goals of our experiment is to improve the experimental error on the value ofdn

2 by a factor of four. It
subsequently provides a benchmark test of lattice QCD calculations, shown in Figure 1.
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Figure 1: dn2 as a function ofQ2. All the data shown with the exception of the SLAC E155x data are dominated by
resonance contributions. E06-014 data will observe mostlythe DIS contribution. The projected error on from E06-
014 [6] is shown, along with the lattice QCD result [7]. The dashed green curve shows the pQCD evolution from
the lattice point [8] based on the calculations of [9, 10]. Data from JLab experiments E94-010 [11] and RSS [12] are
included in the plot. For comparison to the resonance contribution, a MAID model [13] is plotted. Also plotted is the
totald2 from SLAC experiment E155x [14].

1.1.2 A1: The Virtual Photon-Nucleon Asymmetry

Another quantity of interest is the virtual photon-nucleonlongitudinal spin asymmetryA1. It provides insight into the
quark structure of the nucleon and can be defined as:

A1
(

x,Q2)≡
σ1/2−σ3/2

σ1/2+σ3/2
, (7)

where the subscript 1/2 (3/2) gives the projection of the total spin of the virtual photon-nucleon system along the virtual
photon direction corresponding to the nucleon’s spin anti-parallel (parallel) to the virtual photon. Constituent quark
models (CQM) and pQCD models predictA1 to be large and positive at largex. Figure 2(a) shows the current world
data compared to these models. It is seen that the CQM (yellowband [15]) describes the trend of the data reasonbly
well. The pQCD parameterization with hadron helicity conservation (dark blue curve [20])—assuming quark orbital
angular momentum to be zero—does not describe the data well.However, the pQCD model allowing for quark orbital
angular momentum to be non-zero (green curve [21]) describes the data well, pointing perhaps to the importance of
quark orbital angular momentum in the spin structure of the nucleon.

CombiningAn
1 data measured on a polarized effective neutron target withAp

1 data measured on a polarized proton
target allows access to∆u/u and∆d/d. Recent results from Hall A [19] and from CLAS [22] showed a signicant
deviation of∆d/d from the pQCD predictions, which have that ratio approaching 1 in the limit ofx→ 1 (Fig. 2(b)).
As part of the 12 GeV program, two approved experiments (one in Hall A [23] and one in Hall C [24]) will extend the
accuracy andx range of this measurement, but a measurement ofAn

1 at the kinematics of this experiment (E06-014)
will provide valuable support (or refutation) of prior JLabresults, while producing additional input for theoretical
models in advance of the coming experiments at 12 GeV.

1.2 The Experiment

The experiment ran in Hall A of Jefferson Lab from February toMarch of 2009, with two beam energies ofE = 4.73
and 5.89 GeV, covering the resonance and deep inelastic valence quark regions, characterized by 0.2≤ x≤ 0.7 and
2 GeV2 ≤ Q2 ≤ 6 GeV2. The coverage in thex andQ2 plane is shown in Figure 3.
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(a) An
1 (b) ∆d/d

Figure 2: Current data forAn
1 and∆d/d. (a): The current world data for the neutronA1 from SLAC E143 [16] and

E154 [17] and HERMES [18], along with JLab E99-117 [19]. Alsoshown are CQM models and various pQCD
models; (b): the corresponding models and data from HERMES and JLab for∆d/d.

In order to calculatedn
2, we scattered a longitudinally polarized electron beam offof a 3He target, in two polar-

ization configurations – longitudinal and transverse.3He serves as an effective polarized neutron target since roughly
86% of the polarization is carried by the neutron. This is dueto the two protons in the nucleus being primarily bound
in a spin singlet state [25, 26].

We measured the unpolarized total cross sectionσ0 and the asymmetriesA‖ and A⊥. The cross section was
measured by the Left High-Resolution Spectrometer (LHRS),while the asymmetries were measured by the BigBite
Spectrometer. The LHRS and BigBite were oriented at scattering angles ofθ= 45◦ to the left and right of the beamline,
respectively.

Expressing the structure functions entirely in terms of these experimental quantities, we have the expression for
dn

2:
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wherex= Q2/2Mν, ν = E−E′ is the energy transfer to the target,E′ is the scattered electron energy, andy= ν/E is
the fractional energy transfer to the target. The asymmetries are given by:

A‖ =
N↓⇑−N↑⇑

N↓⇑+N↑⇑ and A⊥ =
N↓⇒−N↑⇒

N↓⇒+N↑⇒ ,

whereN is the number of electron counts measured for a given configuration of beam helicity (single arrows) and
target spin direction (double-arrows).

While dn
2 was the main focus of the experiment, the measurement of the asymmetries allowed for the extraction of

An
1, according to:

An
1 =

1
D(1+ηξ)

An
‖−

η
d (1+ηξ)

An
⊥, (9)

whereD, η, ξ andd are kinematic factors [27].
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Figure 3: The E06-014 kinematic coverage inQ2 andx. The lower band is the 4.73 GeV data set and the upper band is
the 5.89 GeV data set. The black dashed line shows W = 2 GeV. Thedata to the left and right of this line corresponds
to deep inelastic scattering (DIS) and resonance data, respectively.

1.3 Beam Polarization

E06-014 used a polarized electron beam at energies of 4.73 and 5.89 GeV. The polarization of the electron beam was
measured independently through Compton and Møller scattering. During the running of E06-014, there were several
Møller measurements performed while Compton measurementswere taken continuously throughout the experiment.
Figure 4 shows the beam polarization as a function of BigBiterun number for the Møller and Compton results. The
beam polarization data was split into four run sets and the average polarization for each run period was then computed
by taking into account both the Compton and Møller data. The final beam polarizations can be seen in Table 1 [28].

Run Set Beam Energy (GeV) Pe from Compton Pe from Møller CombinedPe

1 5.90 0.726±0.018 0.745±0.015 0.737±0.012
2 4.74 0.210±0.011 - 0.210±0.011
3 5.90 0.787±0.020 0.797±0.016 0.793±0.012
4 4.74 0.623±0.016 0.628±0.012 0.626±0.010

Table 1: Final beam polarization for E06-014, corrected forbeam fluctuations. For run set 2 there was no Møller
measurement. [28]

1.4 3He Target Density

A complete understanding of the target density is essential, since the calculation of the target polarization from the
EPR and NMR measurements depends on the3He density. The number density of3He was measured in both the
pumping and the target chambers. This measurement was achieved by exploiting the fact that collisions with3He
atoms broaden the D1 and D2 absorption lines of rubidium [29]. The3He number density at room temperature,n0,
can be obtained by measuring the width of the D1 and D2 absorption lines and subtracting a 1% N2 contribution.

The full analysis to determine the3He density may be found in [31].
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Figure 4: Final electron beam polarization from Møller and Compton measurements for E06-014. Note there was no
Møller measurement for the second run set [28].

1.5 Polarized 3He Target

Knowledge of the target polarization is crucial when performing a double-spin asymmetry experiment. E06-014 used
the standard Hall A polarized3He target with two holding field directions: longitudinal and transverse in plane, with
respect to the electron beam direction. The target polarization was extracted through electron paramagnetic resonance
(EPR). The longitudinal polarization was cross checked using nuclear magnetic resonance (NMR) measurements.
EPR measurements were taken every several days during the experiment, while NMR measurements were taken every
few hours.

1.5.1 EPR Calibration

The frequency shift of potassium level transitions in the presence of3He was measured using EPR. This frequency
shift ∆νEPR can be related to the target polarization,P3He:

∆νEPR=
4µ0

3
dνEPR

dB
κ0µ3HenpcP3He, (10)

whereµ0 is the vacuum permeability,µ3He is the magnetic moment,dνEPR
dB is the derivative of the EPR frequency with

respect to the magnetic field,κ0 is the enhancement factor, andnpc is the pumping chamber number density. EPR
measurements give the absolute3He polarization in the pumping chamber. However, it is the3He polarization in the
target cell that needs to be extracted. A polarization gradient model is used in order to determine the polarization
between the two chambers. The change in polarization in the two chambers is given by:

dPT

dt
= dP(PT −PP)+ γSE(PRb−PP)−ΓPPP (11)

dPP

dt
= dT (PP−PT)+ΓTPT , (12)

wherePT,P,Rb is the polarization of the target chamber, pumping chamber3He and rubidium atoms.ΓT is the depolar-
ization rate of the3He;γSE is the spin exchange rate between3He and rubidium atoms, anddP,T are diffusion constants
that depend on the target cell geometries and3He density. Taking the equilibrium solution, we obtain an expression
that relates the polarizations between the two chambers, which can be seen in:

PT =
1

1+ ΓT
dT

PP. (13)

The calculated diffusion constant,dT , is shown in Table Table 1.5.1 for both target spin directions. The depolar-
ization rate is a sum of various depolarization rates causedby different sources as shown in Equation 14.ΓHe+Γwall

are determined by measuring the target cell polarization live time. The depolarization rate due to the beam,Γbeam, was
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Table 2:dT diffusion constant for both target spin directions.
Parameter Target Spin Value Units Uncertainty [%]

dT Long. 0.892 h−1 15.04
dT Trans. 0.889 h−1 15.06

Table 3: List of parameters used to calculateΓT

Parameter Value Units Uncertainty [%]
ΓHe+Γwall 0.0714 h−1 35

Γbeam 0.0794 h−1 10.45
ΓAFP neg. h−1 neg.
Γ∇B neg. h−1 neg.

ΓT 0.1508 h−1 36.53

found by using a model [30].Γ∇B was calculated by measuring the gradient magnetic holding fields which polarize
the target, and were found to be negligible.ΓAFP was also found to be negligible. Table Table 1.5.1 shows the results
of the depolarization rates.

ΓT = ΓHe+Γwall +Γbeam+ΓAFP+Γ∇B (14)

During EPR measurements, a NMR measurement was done simultaneously, allowing us to calibrate NMR mea-
surements during production with the EPR measurements by taking the ratio of the target polarization measured by
EPR,PT , and the measured NMR amplitude,h. A conversion factorc′ can then be formed that allows NMR measure-
ments to be converted into an absolute3He polarization.

After applying thec′ factor to all NMR measurements, a linear interpolation was done as a function of run time.
This allowed the extraction of a target polarization on a run-by-run basis. The pumping and target chamber polariza-
tions were extracted via EPR measurements, shown in Figure 5.
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Figure 5:3He polarization in the pumping and target chambers. Some3He polarization is lost while traveling between
the two chambers.

6



1.5.2 Water Calibration

In addition to calibrating the NMR using EPR measurements, NMR measurements on a water sample can also be used
to calibrate3He NMR signals. The polarization of the protons in the water,when placed in a known magnetic field,
can be solved exactly. The water polarization was measured by performing NMR measurements on a target cell filled
with water. The water target cell was similar in geometry to the3He filled cells. The water NMR signal was detected
in two sets of pick-up coils that extended the length of the target (40 cm) on both sides. A NMR cross-calibration
factor needs to be applied when using the water calibration,because the NMR measurement for the water cell and3He
target cell took place in two different locations and the signals were measured in two different pick-up coil sets. The
cross-calibration factor can be calculated by selecting a3He target spin direction and then taking the ratio of the3He
NMR signal measured in the pick-up coils at the water cell position and the3He NMR signal measured at the3He
target cell position during a production run. This could in principle be done for all target spin directions, longitudinal
and transverse. Unfortunately, there was no transverse NMRmeasurements with the3He in the water cell position;
as a result, there is a large systematic uncertainty on the transverse target polarization. With this in mind, the water
calibration for the longitudinal direction is used to cross-check the target polarization extracted from the longitudinal
EPR calibration.

Due to the fact that the polarization of water is small (≈ 7×10−9), a water polarization model was used in order to
fit the water NMR signal and accurately extract the NMR signalheight. The time evolution of the water polarization
can be described by the Bloch equations given as:

dPx(t)
dt

= − 1
T2

Px(t)+ γ(H(t)−H0)Py(t)+
1
T2

χH1 (15)

dPy(t)
dt

= −γ(H(t)−H0)Px(t)−
1
T2

Py(t)+ γH1Pz(t) (16)

dPz(t)
dt

= −γH1Py(t)−
1
T1

Pz(t)+
1
T1

χH(t), (17)

whereP is the water polarization in a particular direction;t is the time;T1 andT2 are the longitudinal and transverse
spin relaxation times;H0 is the resonance field;H1 is the transverse field component;H(t) = H0 +αt is the field
component along the z-axis;α = 1.2 G/s is the field sweep speed;γ is the gyro-magnetic ratio of the proton;χ=

µp,H2O

kBT ,
with µp,H2O being the magnetic moment of a proton in water;kB is the Boltzmann constant andT is the target chamber
temperature.

Using the Bloch equations, an effective polarization,Pe f f =
√

P2
x +P2

y +P2
z , can be calculated and leads to the

integral equation shown in Equation 18. This equation was solved numerically using Mathematica. However, an
analytic function is needed to fit the water NMR signal, so approximations toPe f f were made. Figure 6 shows the
water NMR fit results for 6,189 NMR sweeps.

Pe f f(t) = e−(t−ti)/T1

[

Peq(ti)+
1
T1

∫ t

ti
e(u−ti)/T1Peq(u)du

]

(18)

While the geometries of the water and3He cells are similar, they are not identical. To correct for this discrepancy,
the ratio of the flux through the3He and water cells was calculated. With this information, a water calibration constant
can be formed, shown in Equation 19.

cw =

(

Pw

Sw

)(

Gw

GHe

)(

µp

µHe

)(

npΦw

npc
Heφpc

He+ntc
Heφtc

He

)

(

SHe
pick−up

SHe
prod.

)

, (19)

wherew(p) means water target (proton),Hemeans3He target,P is the polarization,S is the NMR signal height andµ
is the magnetic moment.Spick−up is the NMR signal with the3He target measured at the pick-up coil location where
the water NMR was done.Sprod. is the NMR signal measured with the3He in the production position. Applying this
constant to the interpolated NMR measurements, a run-by-run 3He target polarization can be extracted. By comparing
the longitudinal target polarizations extracted from the EPR and water calibrations, both methods were found to give
consistent results.
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Figure 6: Presented are the sweep up and sweep down signals for the downstream and upstream coils. The Y lock-in
channel is shown as red markers with water fit shown as a black line. The X lock-in channel is shown as a blue line.

1.6 The Left High-Resolution Spectrometer

1.6.1 Unpolarized Total Cross Sections

The Left High-Resolution Spectrometer (LHRS) was used to measure the unpolarized total cross section. The analysis
for the extraction of the experimental cross section,σrad, for the E = 4.73 GeV and 5.89 GeV data sets is shown in [31].

1.6.2 Radiative Corrections

Electrons lose energy due to interactions with material. This includes the material before and after the target, and the
target material itself. These interactions will alter the electron’strue incident energy and also itstruescattered energy.
This ultimately results in a different cross section than the true value. These effects are characterized by ionization(or
Landau straggling) and bremsstrahlung. There are also higher-order processes at the interaction vertex that must be
considered. Collectively, the correction of these effectsis calledradiative corrections.

A first correction that must be donebeforecarrying out the radiative corrections is to subtract the elastic radiative
tail, since it is long and affects all states of higher invariant massW [32]. For these kinematics, the elastic tail is
negligible and was not subtracted from the data.

The3He quasi-elastic tail, however, has a larger contribution and needs to be subtracted. The tail was built up from
calculating theelastic tail of the proton and neutron using ROSETAIL [33] and addingthem together as 2p+ n, to
account for two protons and one neutron in3He. The systematic effect of the subtraction on the resulting cross section,
σrad, was≤ 0.5%.

In considering the effects mentioned above, themeasuredcross section is realized in terms of a triple-integral:

σrad(Es,Ep) =
∫ T

0

dt
T

∫ Es

Emin
s

dE′
s

∫ Emax
p

Ep

dE′
pI
(

Es,E
′
s, t
)

σr
(

E′
s,E

′
p

)

I
(

Ep,E
′
p,T − t

)

, (20)

whereσrad is the measured (radiated) cross section,σr is the internally-radiated cross section.Es is the incident
electron energy,Ep is the scattered electron energy.I (E0,E, t) is the probability of finding an electron with incident
energyE0 that has undergone bremsstrahlung with final energyE at a deptht inside a material [32, 34].

In order tounfoldthe Born cross section, an iterative procedure is carried out in RADCOR [35]. It amounts to an
“energy-peaking” approximation, resulting in the calculation of:
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Figure 7: Unpolarized Born cross sections and P. Bosted’s F1F209 model [36] as a function of scattered electron
energy (Ep) for beam energies of 4.73 (a) and 5.89 GeV (b). The error barsare the in quadrature sum of statistical and
systematic errors (Sect. 1.6.3).

σi
b =

1
C

[

σrad−
∫

(. . .)σi−1
b dE′

s−
∫

(. . .)σi−1
b dE′

p

]

, (21)

where C and the two integrals are defined in Equation IV.2 in [32]. σi
b is the Born cross section obtained for theith

iteration of the code,σrad is the radiated cross section to be corrected.σi
b is then re-inserted into equation for the next

iteration. It was found that the calculation converges within the first 3–4 iterations. Figure 7 shows the Born cross
sections.

In E06-014, we took data for only twoEs values of 4.73 GeV and 5.89 GeV. However, we need enough data to
properly calculate the integrals above. Therefore, we useda suitable cross section model [36] to fill in the rest of the
phase space for each data set.

1.6.3 Systematic Errors

Table 4 shows the systematic errors determined from the dataas compared to the projected errors in the E06-014
proposal [6]. One large contribution comes from the cuts on the target variables; the cut on the horizontal scattering
angle,φ, contributes at the∼ 2% level. This is not surprising since the Mott cross sectionis most sensitive to this
quantity. Another large contribution comes from the radiative corrections. The source of this is due to the dependence
on the cross section model used and how accurately we know thematerial thicknesses in the electron’s path before and
after scattering. These two radiative correction errors combine for an error of∼ 4%.

Type Proposal (%) Experiment (%)

PID Efficiency ≈ 1 1
Background Rejection Efficiency ≈ 1 1

Beam Charge < 1 ≈ 0.3
Acceptance Cut 2–3 2.7
Target Density 2–3 2.2

Dead Time < 1 < 1
Radiative Corrections ≤ 10 < 4

Table 4: The systematic errors on the Born cross section. Thelargest contributions come from the radiative corrections
and the target cuts. However, all values are within the limits specified in the proposal.
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1.7 The BigBite Spectrometer

1.7.1 The Double-Spin Asymmetries

The BigBite spectrometer was used to measure the parallel and perpendicular double-spin asymmetries between lon-
gitudinally polarized electrons and a longitudinally or transversely polarized3He target. These asymmetries were
then corrected for imperfect beam and target polarizations. Corrections were also made for dilution effects due to the
presence of N2 in the target [29]. The full details of this analysis may be found in [31].

1.7.2 Positron Contamination Correction

In addition to N2 contamination, pair-produced electrons can also contaminate the asymmetry. To remove this dilution,
thepositronasymmetry is measured on the BigBite spectrometer and is subtracted from the electron asymmetry as:

Ae−
n =

Araw,e−
n −RAe+

n

1−R
(22)

R =
Ne+

p

Nraw,e−
n

, (23)

whereAe−
n is the corrected electron asymmetry;Araw,e−

n is the uncorrected electron asymmetry;Ae+
n is the positron

asymmetry;R is the ratio of positron to electron events, serving as a weight factor to properly scale the positron
asymmetry. The subscriptn (p) refers to negative (positive) polarity. With BigBite in negative polarity, electrons bend
up into the detector, whereas positrons bend downwards.

After applying this correction to the parallel and perpendicular asymmetries, we obtain the values shown in Fig-
ure 8(a) for E = 4.73 GeV and Figure 8(b) for E = 5.89 GeV. Radiative corrections have not been applied.

1.8 Preliminary Physics Results

In this section, we present our preliminary physics resultsfor asymmetryA
3He
1 and the spin structure functionsg1 and

g2 on 3He. These results are preliminary because work is being doneon the radiative corrections to the asymmetries
along with a Geant4 simulation to further investigate the difference between the bend-up and bend-down acceptances
in the BigBite spectrometer.

The extraction ofd
3He
2 and dn2 along with the neutron asymmetryAn

1, and the spin structure functionsg1,2 are also
underway; however, the extraction is model-dependent. Previous experiments [19] have used Bissey et al.’s complete
model in the DIS regime [39]. However, E06-014’s data spans both the DIS and resonance regions. A consistent
treatment of both DIS and resonance data requires careful consideration of structure-function smearing [40]. We are
working with W. Melnitchouk to extract neutron quantities across our entire kinematic range.

1.8.1 The Virtual Photon-Nucleon Asymmetry

Figure 9(a) and Figure 9(b) shows the preliminary result forA
3He
1 at E = 4.73 and 5.89 GeV, respectively. Also shown

is world data from SLAC E142 [37] and JLab E01-012 [38] and E99-117 [19]. The red (blue) data points indicate the
DIS (resonance) data for this experiment. No radiative corrections have been applied to these data. The data from this
experiment are consistent with the world data across a wide range inx, despite the larger error bars in the resonance
region.

1.8.2 The Spin Structure Functions

En route to extractingdn
2, the spin structure functionsg1 andg2 can be obtained according to:

g1 =
MQ2

4α2

2y
(1− y)(2− y)

σ0
[

A‖+ tan(θ/2)A⊥
]

(24)

g2 =
MQ2

4α2

y2

(1− y)(2− y)
σ0

[

−A‖+
1+(1− y)cosθ
(1− y)sinθ

A⊥

]

, (25)
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(a) E = 4.73 GeV

(b) E = 5.89 GeV

Figure 8: Physics asymmetries with positron corrections. The magenta line shows the DIS threshold, below which is
the DIS region. No radiative corrections. (a): E = 4.73 GeV data; (b): E = 5.89 GeV data.
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(a) E = 4.73 GeV

(b) E = 5.89 GeV

Figure 9:A
3He
1 compared to the world data from SLAC E142 [37] and JLab E01-012 [38] and E99-117 [19]. (a): E =

4.73 GeV data; (b): E = 5.89 GeV data.
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Figure 10: Preliminary results for the spin structure functionsg1 andg2 on a3He target for E = 4.73 and 5.89 GeV
compared to the world data and the DSSV model [41] and models from Weigel and Gamberg [42], Bourelly and
Soffer [43], and Stratmann [44]. (a) and (b):g1

3He andg2
3He for a beam energy of E = 4.73 GeV. (c) and (d):g1

3He

andg2
3He for a beam energy of E = 5.89 GeV.

whereM is the nucleon mass;α is the electromagnetic fine structure constant;y= ν/E, the fractional energy transfer
to the target;θ is the electron scattering angle;σ0 is the unpolarized total cross section;A‖ (A⊥) is the parallel
(perpendicular) double-spin electron asymmetry.

The preliminary results forg1
3He andg2

3He are shown in Figure 10, which compares the data to various models [41,
42, 43, 44] and the world data. Radiative corrections have been appliedonly to the unpolarized total cross sections for
the data from this experiment.
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