CURRENT DARK MATTER THEORY AND MOTIVATION FOR APEX

NATALIA TORO (SLAC)

APEX COLLABORATION MEETING JULY 24, 2018

INTRODUCTION

Broad theoretical context for APEX

 APEX and the world status of dark photon searches

 Motivations for the APEX parameter space

SEARCHING FOR NEW PHYSICS

SEARCHING FOR NEW PHYSICS

SEARCHING FOR NEW PHYSICS

Most interactions between new physics and Standard Model are highly energy-suppressed, due to symmetries of SM!

The few allowed couplings are our pathways to discovery!

1) A new gauge boson A' can kinetically mix with SM photon:
→ small coupling to familiar matter proportional to its charge

- 2) A new scalar boson can mix with Higgs → small coupling prop. to quark & lepton masses *highly constrained by meson decays*
- 3) A new fermion can mix with neutrinos → rare higgs decays, production in neutrino scattering very hard to detect SM extensions allow more general couplings

"Dark photon" is both a well-motivated scenario and an approximate stand-in for many of the viable "generalized" interaction types (e.g. B-L gauge boson, leptophilic scalar)

SEARCHING FOR DARK PHOTONS

Exploit coupling to electrons, protons, or muons!

1. Corrections to precision physics (e.g. g-2) corrections

2.SM decays (via kinetic mixing)

3. Invisible decays (into the dark sector, if kinematically allowed)

A' STATUS 2008

A' STATUS 2018 (VISIBLE)

Natural parameter space is illustrated by coupling on y-axis, mediator mass on x-axis.

In "prompt" coupling range, key discovery handle is a resonance in e+e- pair mass

High statistics, smooth background & excellent mass resolution → sensitivity to percent-level peaks

MOTIVATIONS: PRECISION ANOMALIES

MOTIVATIONS: EXPECTED COUPLINGS

MOTIVATIONS: EXPECTED COUPLINGS

MOTIVATIONS: EXPECTED MASSES

GENERALIZING WIMPS: STARTING POINT

Simple, familiar particle content

Me∜

Ge∜

Motivated mass range

TeV

GENERALIZING WIMPS: HIDDEN SECTOR DM

GENERALIZING WIMPS: HIDDEN SECTOR DM

MOTIVATIONS: DARK MATTER FREEZE-OUT

MOTIVATIONS: DARK MATTER FREEZE-OUT

 $m_{A'} = 1.3 \ m_{DM}$, $\alpha_D = 0.5$

MOTIVATIONS: DARK MATTER FREEZE-OUT

Early universe thermal freezeout cross-section is constrained by DM abundance

APEX explores interaction strengths consistent with thermal freeze-out of light DM

CONCLUSIONS

Exciting discovery physics at the weak-coupling, low-mass frontier!

"Dark photon" coupled to EM charges is a generic signal of SM-neutral new physics and important benchmark model APEX explores significant and motivated parameter space

 Theoretical expectations for mixing strength and (less sharply) dark photon mass

Dark-matter-motivated milestones
Light DM production

