An Integrating Method for Compton Photon Polarimetry at Jefferson Lab

Diana Parno
for the Hall A Compton Collaboration
Outline

- Compton polarimetry in Hall A
- Data acquisition
- Simulation results
- Preliminary polarization measurements
Compton Polarimetry

- Spin-dependent asymmetry in Compton cross section gives access to electron beam polarization

\[A_{\text{exp}} = \frac{S^+ - S^-}{S^+ + S^-} = P_\gamma \times P_e \times \langle A_l \rangle \]

- Measured experimentally
- Calculated theoretically

- Parallel polarization counted in \(S^+ \)
- Anti-parallel polarization counted in \(S^- \)
• Route incoming electron beam through a magnetic chicane and into Fabry-Perot cavity for Compton scattering

• Detect scattered photons and electrons

• Unscattered electrons continue downstream
Integrating DAQ

- 16-bit FADC samples signal every 5 ns, writes to disk every 1/30 second
 - Integrated signal from photon detector
 - Peaks, areas of individual pulses
 - Occasional waveforms from individual pulses
- Ancillary data from other DAQ elements
 - Rates in photon detector
 - Beam current, power in Fabry-Perot cavity, photon polarization, ...
Integrating Method

- Integrate energy-weighted photon signal over 1/30 second
- With programmable thresholds, we can cut out pedestal noise, large background pulses, etc
- We can compute the asymmetry over
 - A single electron helicity pair or quadruplet
 - An entire Compton laser cycle
Simulation Results

- We need to understand analyzing power, detector response
 - GEANT4 simulations of beamline, detector

- Test against spectra measured in data from individual photon pulses

- Impressive agreement at several electron energies
Preliminary Results

- Compton polarization measurements from HAPPEx (Fall 2009), compared to Møller measurements
Conclusion

- Integrating Compton photon polarimetry has performed well in Hall A during several experiments
 - d_2^n: Neutron quark-gluon correlations (Spring `09)
 - HAPPEx-III: Nucleon strange form factors (Fall `09)
 - PVDIS: Parity violation in deep inelastic scattering (Fall `09)

- Measurements agree well with other polarimetry methods over a range of electron beam energies (3.5 GeV-5.9 GeV) and photon rates (5-100 kHz)

- We’re looking forward to low-energy polarimetry during PREx next month
Thank you!

dparno@cmu.edu