Cross Section Systematic Errors and Radiative Corrections to Asymmetries

Analysis for d₂ⁿ

D. Flay

10/11/12

1/23

Outline

1 Cross Section Systematic Errors Background Subtraction

2 Radiative Corrections to Asymmetries Polarized Cross Section Differences

Background Subtraction Errors (1) Description

- We measure the background signals for:
 - Positrons from ³He (σ_{e^+})
 - Nitrogen ($\sigma_N^{e^-}$, $\sigma_N^{e^+}$)

These data are subtracted from the raw signal.

• When we do not have data, we use a fit:

$$f(x) = \frac{1}{x^2} e^{(p_0 + p_1 x)}$$

• How to estimate the error from using the fit? Utilize the errors on the parameters obtained from ROOT

Background Subtraction Errors (2) Procedure

- Plot the fit for each spectrum using $p_i = p_i^0 \pm \delta p_i$
 - p_i^0 is the central value of the $i^{\rm th}$ parameter
- Re-calculate the experimental cross section for a given set of parameters for each spectrum and compare to the result obtained from the central parameter values

Background Subtraction Errors (3)

Nitrogen Dilution (Negative Polarity, 4-pass)

Background Subtraction Errors (4)

Nitrogen Dilution (Negative Polarity, 5-pass)

Background Subtraction Errors (5)

Nitrogen Dilution (Positive Polarity, 4-pass)

Background Subtraction Errors (6)

Nitrogen Dilution (Positive Polarity, 5-pass)

Background Subtraction Errors (7) Positrons (4-pass)

Background Subtraction Errors (8) Positrons (5-pass)

Background Subtraction Errors (9)

Experimental Cross Sections (Low band, 4-pass)

Background Subtraction Errors (10)

Experimental Cross Sections (High band, 4-pass)

Background Subtraction Errors (11)

Experimental Cross Sections (Low band, 5-pass)

Background Subtraction Errors (12)

Experimental Cross Sections (High band, 5-pass)

Polarized σ Differences (1) Description

• We calculate the polarized cross section difference by:

$$\Delta \sigma = 2\sigma_0 A$$

- σ_0 = Unpolarized σ from F1F209 (radiated)
- A = Asymmetry from data
- In the plots that follow, A and $\Delta \sigma$ have been corrected for positrons but no subtraction of polarized elastic tail

Polarized σ Differences (2)

F1F209 Unpolarized Cross Section at 4-pass

 σ_0 at E_s = 4.73 GeV

Polarized σ Differences (3) 4-pass, Longitudinal

イロト イポト イヨト イヨト

Polarized σ Differences (4) 4-pass, Transverse

イロト イポト イヨト イヨト

Polarized σ Differences (5)

F1F209 Unpolarized Cross Section at 5-pass

 σ_0 at E_s = 5.89 GeV

Polarized σ Differences (6) 5-pass, Longitudinal

20/23

イロト イポト イヨト イヨト

Polarized σ Differences (7) 5-pass, Transverse

・ロ・・聞・・思・・思・ ほうのくの

21/23

Summary

- Cross Sections
 - Background subtraction errors from fits seem reasonably well behaved at \lesssim 2–4%
 - $E_s = 5.89$ GeV, $E_p = 0.70$ GeV data point has a large fluctuation \Rightarrow high sensitivity to positron fit
- Radiative Corrections of Asymmetries
 - Used F1F209 to determine $\Delta \sigma_{\parallel,\perp}$ from asymmetry data

What's Next?

- Cross Sections
 - What to do about the $E_s = 5.89$ GeV, $E_p = 0.70$ GeV data point?
- Radiative Corrections of Asymmetries
 - Use F1F209 and DSSV to construct $g_{1,2},$ leading to $\Delta\sigma_{\parallel,\perp}$ to fill in phase space