Project: E12-14-012 Argon/Ti	
Tittle: Beam energy loss in the targets	
Document Number: TGT-CALC-16-001	
Revision: Rev 0	
Author: Dave Meekins	
Reference	
Leo: Techniques for Nuclear and Particle Physics	ics
Icropera and DeWitt: Fundamentals of Heat a	nd Mass Transfer
Description:	
General calculations for beam energy loss in the	he Ar target cell and Ti target foil. Calc
follows Bete-Bloch with simplified parameteriz	ation of density effect instead of full
Sternheimer's. Only electron collision energy le	oss is considered.
Loss is considered for aluminum windows and	Ar gas for the target cell. Heat is
generated in the target fluid and the aluminum	n windows. Heat is removed by
interaction with the cell wall. Beam is assumed	d to be rastered 2x2mm.
Target cell block is assumed to be held at fixe	d T=130K
Initial fill pressure of cell is 600 psia at 300K.	
Target cell operating pressure (no beam) 216.	.85K
Beam on titanium is assumed to be 100 micro	A with 2x2 mm raster.
Reference Drawing(s):	
TGT-103-1000-0012 Cell assy	
Units and constants:	
$eV := 1.602 \cdot 10^{-19} \cdot J$	def of electron volt
$MeV = 10^6 \cdot eV$	def of meda eV
$r_e \coloneqq 2.817 \cdot 10^{-13} \cdot cm$	classical radius of electron

Collision energy loss of elecron beam on target material. The method is from Leo. The shell correction is neglected.

Aluminu 7075 al 7075.	um entrance window uminum is treated as pure aluminum for this ca	lculation with the higer density of
	$L_x := 0.010 \cdot in = 0.254 \ mm$	length of absorber material
	Z:=13	Atomic number
	$A \coloneqq 26.98 \cdot \frac{gm}{mol}$	Atomic weight
	$\rho \coloneqq 2.69 \cdot \frac{gm}{cm^3}$	density
	$I \coloneqq \text{if } Z < 13$ $ \left\ (12 \cdot Z + 7) \cdot eV \right\ $ else $ \left\ (9.76 \cdot Z + 58.8 \cdot Z^{-0.19}) \cdot eV \right\ $	Ionization potential
	$hv_p \coloneqq 28.816 \cdot \sqrt{\frac{\rho \cdot Z}{A}} \cdot eV \cdot \sqrt{\frac{cm^3}{mol}} = 32.807 \ eV$	V plasma energy
	$C_1 \coloneqq -\left(2 \cdot \ln\left(\frac{I}{hv_p}\right) + 1\right) = -4.206$	
	$\delta \coloneqq \text{if } X < 3$ $\ 4.6052 \cdot X + C_1 + \frac{C_1}{27} \cdot (3 - X)^3 \ $ else $\ 4.6052 \cdot X + C_1 \ $	
	$C \coloneqq dd1 \cdot \left(\frac{I}{eV}\right)^2 + dd2 \cdot \left(\frac{I}{eV}\right)^3 = 1.504 \cdot 10^{-9}$	shell correction

Aluminum exit window

7075 aluminum is treated as pure aluminum for this calculation with the higer density of 7075.

$Z \coloneqq 13$	Atomic number
$A \coloneqq 26.98 \cdot \frac{gm}{mol}$	Atomic weight
$\rho \coloneqq 2.69 \cdot \frac{gm}{cm^3}$	density
$I \coloneqq \text{if } Z < 13$ $ \ (12 \cdot Z + 7) \cdot eV \\ \text{else} \\ \ (9.76 \cdot Z + 58.8 \cdot Z^{-0.19}) \cdot eV \ $	Ionization potential
$hv_p \coloneqq 28.816 \cdot \sqrt{\frac{\rho \cdot Z}{A}} \cdot eV \cdot \sqrt{\frac{cm^3}{mol}} = 32.8$	307 <i>eV</i> plasma energy
$C_1 \coloneqq -\left(2 \cdot \ln\left(\frac{I}{hv_p}\right) + 1\right) = -4.206$	constant
$\begin{split} \delta &\coloneqq \text{if } X < 3 \\ & \ 4.6052 \cdot X + C_1 + \frac{C_1}{27} \cdot (3 - X)^3 \\ & \text{else} \\ & \ 4.6052 \cdot X + C_1 \\ \end{split}$	
$C \coloneqq dd1 \cdot \left(\frac{I}{eV}\right)^2 + dd2 \cdot \left(\frac{I}{eV}\right)^3 = 1.504 \cdot 1$	10 ⁻⁹ shell correction

Energy loss in the Argon gas. Average density of the gas is considered. Local variations along path are ignored.

$$L_{x} := 250 \cdot mm$$
length of absorber material
$$Z := 18$$
Atomic number
$$A := 40 \cdot \frac{gm}{mol}$$
Atomic weight
$$\rho_{Ar} := 0.068 \cdot \frac{gm}{cm^{3}}$$
density
$$I := \text{if } Z < 13$$

$$\left\| (12 \cdot 2 + 7) \cdot eV \right\|$$
lonization potential
else
$$\left\| (9.76 \cdot Z + 58.8 \cdot Z^{-0.19}) \cdot eV \right\|$$

$$hv_{p} := 28.816 \cdot \sqrt{\frac{p \cdot Z}{A}} \cdot eV \cdot \sqrt{\frac{cm^{3}}{mol}} = 31.704 \ eV$$
plasma energy
$$C_{1} := -\left(2 \cdot \ln\left(\frac{1}{hv_{p}}\right) + 1\right) = -4.778$$
constant
$$\delta := \text{if } X < 3$$

$$\left\| 4.6052 \cdot X + C_{1} + \frac{C_{1}}{27} \cdot (3 - X)^{3} \right\|$$
else
$$\left\| 4.6052 \cdot X + C_{1} + \frac{C_{1}}{eV} \right\|^{3} = 2.914 \cdot 10^{-9}$$
shell correction

A more detailed CFD analysis is given in TGT-CALC-16-003. This analysis accounts for the significant change of density with beam power and beam power dissipation with density. The power loss as a function of desity is therefore required.

Energy Density:	
For a 2x2 raster with 25 μA beam current the power	density in the aluminum is
$d_{raster} \coloneqq 2 \cdot mm$	raster leg size
$A := d_{raster}^{2}$	raster area
$t := 0.01 \cdot in$	thickness of entrance window
$V \coloneqq t \cdot A = \left(1.016 \cdot 10^{-9}\right) m^3$	Volume of material impacted by the beam
$q := rac{Q_{ent}}{V} = (3.493 \cdot 10^9) \ rac{W}{m^3}$	volumetric heat density from beam in entrance window
$q_{ent} \coloneqq \frac{Q_{ent}}{A} = \left(8.872 \cdot 10^5\right) \frac{1}{m^2} \cdot W$	
This result is applicable to the exit window as well. I	t shall be used in the thermal FEA.

 $q_{exit} \coloneqq \frac{Q_{exit}}{A} = (9.76 \cdot 10^5) \frac{W}{m^2}$

In the target gas

$$d_{raster} := 2 \cdot mm$$
raster leg size $A := d_{raster}^2$ raster area $t := 25 \cdot cm$ thickness of gas target $V := t \cdot A = (1 \cdot 10^{-6}) m^3$ Volume of material impacted
by the beam $q := \frac{Q_{Ar}}{V} = (8.267 \cdot 10^7) \frac{W}{m^3}$ volumetric heat density from beam

assumption given the dimensions of the cell tube.

The density varies with heat load and this in turn varies the density. The density indepentent flux is:

Titanium Foil: Beam current assumed is 100 microA with a 2x2 mm square raster.		
Z:=22	Atomic number	
$A \coloneqq 48 \cdot \frac{gm}{mol}$	Atomic weight	
$\rho \coloneqq 4.5 \cdot \frac{gm}{cm^3}$	density	
$I \coloneqq \text{if } Z < 13$ $ \ (12 \cdot Z + 7) \cdot eV$ else $ \ (9.76 \cdot Z + 58.8 \cdot Z^{-0.19}) \cdot eV$	Ionization potential	
$hv_p \coloneqq 28.816 \cdot \sqrt{\frac{\rho \cdot Z}{A}} \cdot eV \cdot \sqrt{\frac{cm}{mo}}$	$\frac{3}{l} = 41.384 \ eV$ plasma energy	
$C_1\!\coloneqq\!-\!\left(\!2\!\cdot\!\ln\!\left(\!\frac{I}{hv_p}\!\right)\!+1\right)\!=\!-4.576$		
$\delta \coloneqq \text{if } X < 3$ $\ 4.6052 \cdot X + C_1 + \frac{C_1}{27} \cdot (3 - 2) \cdot ($	X) ³	
$C \coloneqq dd1 \cdot \left(rac{I}{eV} ight)^2 + dd2 \cdot \left(rac{I}{eV} ight)^3 =$	$4.539 \cdot 10^{-9}$ shell correction	

