LHRS Calibrations for d_2^n **Progress Report**

D. Flay¹

¹Temple University Philadelphia, PA 19122

6/23/09

Outline

- 1 E/p
 - Fine-tuning
- Contamination in the PR
 - Cut Placement
 - Contamination
- Geant4 Simulation
- Summary

Fine-tuning (1)

- Going back to check positions of e, π peaks in ADC spectra
 - Want each block to have same response, regardless of p
 - First, align π peaks to 100 channels in ADC
- Choose mid-range momentum value: p = 1.20 GeV
 - Good amount of e, π

Fine-tuning (2)

Fine-tuning (3)

Fine-tuning (4)

E/p

0000

Figure: Pion energy deposition in shower for $p=1.20~{\rm GeV}$ after gain-matching.

Placement of cut in Cerenkov

• In order to understand the π -contamination in the shower, we need to first determine the proper position to place the cut in the Cerenkov to select electrons

- Best to place cut at: 3 p.e. in Cerenkov for $p=0.6~{\rm GeV}$
 - Keeps good statistics of main electron peak, while greatly reducing pions that make the cut

π -contamination (1)

π -contamination (2)

Figure: Electrons in blue, pions in red.

Geant4 Simulation

- Coding of simulation in progress
 - Development of simple geometry to start (1 block) is done
 - Calculation and accumulation of energy deposition of electrons has been implemented through the EventAction class (this may need some adjustments – in particular, PMT effects on energy calculations)
 - Still needs implementation of ROOT to plot data
 - Afer this looks good, then move to more complete geometry of PR
 - At some point, implement tracking?
 - Allows calculation of:

$$\frac{1}{E_0} \frac{dE}{dt}$$

- $\rightarrow t = \text{depth in units of } X_0$
- $\rightarrow E_0 = p = \text{initial energy}$

Summary

- E/p is getting there
- Best position of cut in Cerenkov \sim 3 p.e. for $p=0.6~{\rm GeV}$
 - For determination of π -contamination as seen in E/p plot
 - π -contamination seems managable (smaller blue peak)

Summary

What's Next?

- Continue check of gain-matching in shower ADCs
 - Determine issue with block # 15, 16, 32, 33 in layer 1, and # 3, 14, 18 in layer 2
- Continue work on efficiencies
 - PR (efficiency/contamination, pion rejection factor)
 - Cerenkov
- Continue coding of simulation

