

Matthew Posik

¹Temple University Philadelphia, PA 19122

05/19/2011

Matthew Posik (Temple University)

1/26

2

イロン イ理 とく ヨン イヨン

Outline

- Positive Polartiy Energy vs Momentum Distribution
- 2 E/p Cut Adjustments
- Positron Dilutions with E/p Cut Adjustments
 - Positron Dilution Effects on Asymmetries
 - 5 Azimuthal Angle Structure
- 6 Sign of g_1 and g_2
- 7 What's Next

< ロ > < 同 > < 回 > < 回 >

Positive Polarity: Positron E vs p

Figure: Energy vs momentum for positrons with BigBite in positive polarity. Dashed line is E=p.

Figure: Energy vs momentum for electrons with BigBite in positive polarity. Dashed line is E=p.

イロト イポト イヨト イヨト

E/p Cut Adjustments Definition

- Two particle types (e-,e+), two polarity settings (+,-)
- Fit Gaussian to E/p for each particle type and polarity setting
- define cut as $\mu \pm 2\sigma$
- μ = mean value from Gauss fit
- σ = sigma from Gauss fit

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E/p Fit

Figure: Shows the negative polarity electrons. Left plot is total energy, middle plot is momentum and right plot is E/p.

э

E/p Cut Adjustments

E/p Negative Polarity:Electrons E/p Cut

Figure: Shows the negative polarity electrons. Left plot is total energy, middle plot is momentum and right plot is E/p. Red line is mean Gauss vaue and blue lines are cut positions.

э

(a) < (a) < (b) < (b)

E/p Cut Adjustments

E/p Negative Polarity:Positrons E/p Cut

Figure: Shows the negative polarity positrons. Left plot is total energy, middle plot is momentum and right plot is E/p. Red line is mean Gauss value and blue lines are cut positions.

イロト イポト イヨト イヨト

E/p Cut Adjustments

E/p Positive Polarity:Positrons E/p Cut

Figure: Shows the positive polarity positrons. Left plot is total energy, middle plot is momentum and right plot is E/p. Red line is mean Gauss vaue and blue lines are cut positions.

э

(a) < (a) < (b) < (b)

E/p Positive Polarity:Electrons E/p Cut

Figure: Shows the positive polarity electrons. Left plot is total energy, middle plot is momentum and right plot is E/p. Red line is mean Gauss vaue and blue lines are cut positions.

э

Final E/p Cuts

- neg E/p(positron) = (0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[])
 > 0.619 &&(0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[]) < 1.32
- pos E/p(electron) = (0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[])
 > 0.681 &&(0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[]) < 1.188
- pos E/p(positron) = (0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[])
 > 0.779 &&(0.5*BB.ts.ps.e + BB.ts.sh.e)/(1000*skim.p[]) < 1.187

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Positron Dilutions with E/p Cut Adjustments

 After adjusting the E/p cuts for the different particle types and magnet polarity settings I took another look at the Positron dilution factors, and the ratio of electrons and positrons with BigBite in negative and positive polarity settings

Particle Type Counts

2

イロト イヨト イヨト イヨト

Positron Dilution Factors

Figure: Shows positron dilution factor using an negative polarity run for electrons and positive polarity run for positrons

Figure: Shows positron dilution factor using negative polarity run for electrons and positrons

• • • • • • • • • • • •

-

Particle Ratios

Figure: Shows ratio of electrons with BigBite in positive polarity and negative polarity

Figure: Shows ratio of positrons with BigBite in negative and positive polarity

크

Positron Dilutions Effects on Asymmetries

- Using the positrons dilutions factors above (positive/negative polarity ratio) I took a look at how the following asymmetries are affected:
- A_{\parallel}, A_{\perp}
- I then propagated the above asymmetries to A₁ and A₂

< ロ > < 同 > < 回 > < 回 >

A_{\parallel} and A_{\perp} Definition

Definition $(A_{\parallel}, A_{\perp})$

$$\begin{split} A_{\parallel} &= \frac{1}{P_b P_t D_{N^2} D_{e^+}} (A^0_{raw}) \\ A_{\perp} &= \frac{1}{P_b P_t D_{N^2} D_{e^+} \cos(\phi)} \left(\frac{\frac{A^{270}_{raw}}{(\delta A^{270}_{raw})^2} - \frac{A^{90}_{raw}}{(\delta A^{90}_{raw})^2}}{\frac{1}{(\delta A^{270}_{raw})^2} + \frac{1}{(\delta A^{90}_{raw})^2}} \right) \end{split}$$

- P_b = beam polarization
- P_t = target polarization
- D_{N^2}, D_{e^+} = Nitrogen and positron dilution factors
- S = target spin
- ϕ = Azimuthal angle

イロト イポト イヨト イヨト

Positron Dilution Effects on Asymmetries

$\overline{\text{4.7 GeV}} \overline{A_{\parallel}}$, $\overline{A_{\perp}}$ on 3 He

Matthew Posik (Temple University)

2

A_1 and A_2 Definition

Definition (A_1, A_2)

$$A_1 = \left(\frac{1}{D(1+\eta\xi)}\right)A_{\parallel} - \left(\frac{\eta}{d(1+\eta\xi)}\right)A_{\perp}$$
$$A_2 = \left(\frac{\xi}{D(1+\eta\xi)}\right)A_{\parallel} + \left(\frac{1}{d(1+\eta\xi)}\right)A_{\perp}$$

•
$$D = \frac{E - \epsilon E'}{E(1 + \epsilon R)}$$

• $\eta = \frac{\epsilon \sqrt{Q^2}}{E - \epsilon E'}$
• $d = D\sqrt{\left(\frac{2\epsilon}{1 + \epsilon}\right)}$

•
$$\xi = \eta \frac{1+\epsilon}{2\epsilon}$$

•
$$R = \frac{\sigma_L}{\sigma_T}$$

•
$$\epsilon = \left((1 + 2(1 + \gamma^2)tan^2(\frac{\theta}{2}))^{-1} \right)$$

• $\gamma^2 = \frac{Q^2}{\nu^2}$

æ

<ロ> <問> <問> < 回> < 回> 、

4.7 GeV Kinematics I

Figure: Kinematics in x-bins for 10 runs

2

イロト イヨト イヨト イヨト

4.7 GeV Kinematics II

Figure: Kinematics in x-bins for 10 runs

2

・ロト ・ 四ト ・ ヨト ・ ヨト

4.7 GeV Kinematics III

Figure: Kinematics in x-bins for 10 runs

2

4.7 GeV A_1 , A_2 on ³He

Matthew Posik (Temple University)

2

Azimuthal Angle Structure

Figure: Azimuthal angle for x-bin 4

Figure: Azimuthal angle for x-bin 18

イロト イヨト イヨト イヨト

g_1 and g_2 Definitions

Definition

$$g_{1} = (2\sigma_{0}) \left(\frac{MQ^{2}}{4\alpha^{2}} \frac{y}{(1-y)(2-y)}\right) \left[A_{\parallel} + tan(\frac{\theta}{2})A_{\perp}\right]$$

$$g_{2} = (2\sigma_{0}) \left(\frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{2(1-y)(2-y)}\right) \left[-A_{\parallel} + \frac{1+(1-y)cos(\theta)}{(1-y)sin(\theta)}A_{\perp}\right]$$

- $\alpha = \frac{1}{137}$
- M = 0.938 GeV
- $y = \frac{\nu}{E}$
- need σ_0 to get g_1 and g_2 , but we can look at the sign of the structure functions without the cross-section.

・ロト ・ 日本 ・ 日本 ・ 日本 ・

4.7 GeV $\frac{g_1}{2\sigma_0}$, $\frac{g_2}{2\sigma_0}$ on 3 He

Figure: $\frac{g_1}{2\sigma_0}$ and $\frac{g_2}{2\sigma_0}$ as a function of x.

Matthew Posik (Temple University)

2

・ロト ・四ト ・ヨト ・ヨト

- Dave is going to get me a table of cross-sections and x values
- Will be able to really form g_1 and g_2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >