Measurements of the Neutron Longitudinal Spin Asymmetry A₁ in the Valence Quark Region

D. Flay¹, M. Posik¹, D. Parno^{2,3} for the E06-014 Collaboration

¹Temple University ²CENPA, University of Washington ³Carnegie Mellon University

APS DNP, 10/26/13

Outline

1 Polarized Deep Inelastic Scattering

- 2 The Virtual Photon-Nucleon Asymmetry A₁ What is A₁? Theoretical Models Theoretical and Experimental Status
- 3 The E06-014 Experiment Setup and Kinematics
- Preliminary Results A₁ Flavor Decomposition

Polarized DIS

$$\frac{d^{2}\sigma^{(\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow)}}{dE'd\Omega} = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[\left(E+E'\cos\theta\right)g_{1}\left(x,Q^{2}\right)-\frac{Q^{2}}{\nu}g_{2}\left(x,Q^{2}\right)\right]$$
$$\frac{d^{2}\sigma^{(\downarrow\Rightarrow\uparrow\uparrow\Rightarrow)}}{dE'd\Omega} = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{{E'}^{2}}{\nu^{2}E}\left[\nu g_{1}\left(x,Q^{2}\right)+2Eg_{2}\left(x,Q^{2}\right)\right]$$

What is A₁? (1)

 We measure A₁ through the double-spin asymmetries A_∥ and A_⊥:

$$A_{1} = \frac{1}{D\left(1+\eta\xi\right)} \boldsymbol{A}_{\parallel} - \frac{\eta}{d\left(1+\eta\xi\right)} \boldsymbol{A}_{\perp}$$

• The asymmetries are given by:

$$A_{\parallel} \equiv \frac{\sigma_{\downarrow\uparrow\uparrow} - \sigma_{\uparrow\uparrow\uparrow}}{\sigma_{\downarrow\uparrow\uparrow} + \sigma_{\uparrow\uparrow\uparrow}} \quad \text{and} \quad A_{\perp} \equiv \frac{\sigma_{\downarrow\Rightarrow} - \sigma_{\uparrow\Rightarrow}}{\sigma_{\downarrow\Rightarrow} + \sigma_{\uparrow\Rightarrow}}$$

•
$$D, \eta, \xi$$
 and d are kinematic factors

What is A₁? (2) In Terms of Structure Functions

• In terms of the unpolarized structure function *F*₁ and the spin structure functions *g*₁ and *g*₂:

$$A_1(x,Q^2) = \frac{g_1(x,Q^2) - \gamma^2 g_2(x,Q^2)}{F_1(x,Q^2)} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)} \quad (\text{large } Q^2)$$

$$F_1\left(x,Q^2\right) = \frac{1}{2}\sum_i e_i^2 q_i\left(x,Q^2\right)$$
$$g_1\left(x,Q^2\right) = \frac{1}{2}\sum_i e_i^2 \Delta q_i\left(x,Q^2\right)$$
$$q\left(x,Q^2\right) = q^{\uparrow}\left(x,Q^2\right) + q^{\downarrow}\left(x,Q^2\right)$$
$$\Delta q\left(x,Q^2\right) = q^{\uparrow}\left(x,Q^2\right) - q^{\downarrow}\left(x,Q^2\right)$$

- Important for flavor decomposition to obtain $\Delta u/u, \Delta d/d$
 - Need p, n data

Theoretical Models (1) SU(6) Symmetry

Constituent Quark Model (CQM)

- Non-relativistic
- Simplest possible model: no dynamics
- 'Bare' valence quarks are dressed by q-q pairs, gluons
- Choose a symmetric SU(6) wave function for the nucleon
 - Spin and isospin are both 1/2
 - Three flavors: u, d, s

- These assumptions lead to the diquark states for which S = 0, S = 1 to contribute equally
 - Prediction: A₁ⁿ = 0

DNP 2013

Theoretical Models (2)

SU(6) Breaking Mechanism

Relativistic CQM (Close, Thomas, Isgur)

• Utilize the hyperfine interaction: $\vec{S}_i \cdot \vec{S}_j \delta^3(\vec{r}_{ij})$

$$\begin{array}{ll} |n\uparrow\rangle & = & \boxed{\frac{1}{\sqrt{2}} |d\uparrow(ud)_{S=0,S_Z=0}\rangle} \text{ dominant component} \\ & + & \frac{1}{\sqrt{18}} |d\uparrow(ud)_{S=1,S_Z=0}\rangle - \frac{1}{3} |d\downarrow(ud)_{S=1,S_Z=1}\rangle \\ & - & \frac{1}{3} |u\uparrow(dd)_{S=1,S_Z=0}\rangle - \frac{\sqrt{2}}{3} |u\downarrow(dd)_{S=1,S_Z=1}\rangle \end{array}$$

7

Theoretical Models (3)

SU(6) Breaking Mechanism

Perturbative Gluon Exchange (Farrar and Jackson; Brodsky et al.)

- As $x \to 1$, scattering from a relativistic quark
 - Exchange transverse gluon ⇒ flip both spins

Suppressed mode: Longitudinal gluons only
 ⇒ no spin flip

As
$$x \to 1$$

$$A_1^{n,p} \to 1$$
$$\frac{\Delta u}{u} \to 1, \frac{\Delta d}{d} \to 1$$

Theoretical Models (4)

Predictions at Large x

• Summary of selected model predictions as $x \rightarrow 1$:

Quantity Model	A^{n}_1	A ^p ₁	Δ u/u	$\Delta {\sf d}/{\sf d}$	d/u
SU(6)	0	<u>5</u> 9	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$
rCQM	1	1	1	$-\frac{1}{3}$	0
pQCD	1	1	1	1	$\frac{1}{5}$
DSE (Realistic)	0.17	0.59	0.65	-0.26	0.28
DSE (Contact)	0.34	0.88	0.88	-0.33	0.18

DSE calculations from: C. Roberts, R. Holt and S. M. Schmidt, arXiv:1308.1236v3 [nucl-th]

Theoretical and Experimental Status

Theoretical Models and Current World Data

The E06-014 Experiment (1)

The E06-014 Experiment (2) Kinematic Coverage

DNP 2013

A1 Preliminary Results (1)

Compared to World Data

A₁ Preliminary Results (2)

Compared to World Data

DNP 2013

A₁ Preliminary Results (2)

Compared to World Data

Flavor Decomposition Prelim. Results Compared to World Data

DNP 2013

Flavor Decomposition Prelim. Results Compared to World Data

DNP 2013

Aⁿ₁ at 12 GeV Pushing to Larger x

Summary and What's Next

- Extracted preliminary $A_1^{^{3}\text{He}}$, $A_1^{^{n}}$, $\Delta d/d$ and $\Delta u/u$
 - A1 data: we see a similar trend as shown in existing world data
 - $\Delta d/d$ data confirms the sign seen with JLab E99117
- Current and Future Work
 - Extracting Aⁿ₁ in the resonance region
 - Systematic errors for A_1 data, $\Delta d/d$ and $\Delta u/u$ data

Acknowledgements

The E06-014 Collaboration (Hall A)

K. Allada W. Armstrong T Averett F. Benmokhtar W. Bertozzi A. Camsonne M Canan G. D. Cates C. Chen J -P Chen S. Choi F Chudakov F. Cusanno M. M. Dalton W Deconinck C. W. de Jager X. Dena A. Deur C Dutta ELEassi D. Flav A Kolarkar

This work is supported by:

G. B. Franklin M Friend H Gao F. Garibaldi S. Gilad R. Gilman O Glamazdin S. Golge J. Gomez I Guo O. Hansen T. Holmstrom J. Huang C. Hvde H F Ibrahim X. Jiang G. Jin .I Katich A Kelleher

DOE Award From Temple University DE-FG02-94ER40844

W. Korsch G Kumbartzki J J LeRose R. Lindgren N. Liyanage E. Long A Lukhanin V. Mamvan D. McNulty Z.-F. Meziani R. Michaels D. W. Higinbotham M. Mihovilovič B. Moffit N. Muangma S Nanda A. Naravan V. Nelvubin B. Norum Nuruzzaman Y Oh

D. S. Parno

X Qian Y. Qiang A. Rakhman R. D. Ransome S. Riordan A. Saha B. Sawatzky

J. C. Pena

M. Posik

- H. Yao Y Ye 7 Ye
- L. Yuan
- X. Zhan
- Y. Zhang
- Y.-W. Zhang
- B. Zhao
- X. Zheng
- M H Shabestari
- A. Shahinyan
- S Širca
- P. Solvignon
- R. Subedi
- V. Sulkosky
- A Tobias
- W. Troth
- D. Wang
- Y. Wang
- B. Woitsekhowski
- X Yan

Co-spokesperson Ph.D. (complete) Ph.D. (in progress)

TEMPLE

Backup (1)

Radiative Corrections: Description

- In principle, the measured cross section is: $\sigma_{exp} = \sigma_0 + \sigma_{RC}$
- External radiation: Various materials in the path of the incident (scattered) electron causes energy loss
 - Causes a change in the incident (E_s) and scattered (E_p) energies, changing the cross section
 - Characterized by ionization and bremsstrahlung
- Internal radiation: At the interaction vertex, bremsstrahlung can also occur
- These types of radiation can be visualized as:

• The goal of RCs is to remove these effects to obtain σ_0

DNP 2013

Backup (2)

Radiative Corrections: Procedure

- Use the program RADCOR for the radiative corrections
- Convert our physics asymmetries to polarized cross section differences:

$$\Delta \sigma_{\parallel,\perp}^r = 2\sigma_0^r A_{\parallel,\perp}^r$$

- Build an input grid of $\Delta \sigma_{\parallel,\perp}$ that contains contributions from the DIS, quasi-elastic and resonance regions
- Using the grid and our data, RADCOR unfolds the Born $\Delta\sigma_{\parallel,\perp}$
- Convert the $\Delta \sigma_{\parallel,\perp}$ back to asymmetries:

$$A^b_{\parallel,\perp} = \frac{\Delta \sigma^b_{\parallel,\perp}}{2\sigma^b_0}$$

- $r \Rightarrow radiated$
- $b \Rightarrow \mathsf{Born}$
- $\sigma_0 \Rightarrow$ unpolarized cross section

Backup (3) ³He Target

- Vaporized Rb is optically pumped using circularly polarized light to polarize its electrons
- Through hybrid spin-exchange the Rb electrons transfer their spin to K atoms, then K to ³He nuclei

Backup (4) Physics Measurements

• The spin structure functions:

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1-y)(2-y)} \sigma_{0} \left[A_{\parallel} + \tan(\theta/2) A_{\perp} \right]$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{(1-y)(2-y)} \sigma_{0} \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$

Backup (5)

Nuclear Corrections: Description

- Bounded nucleons behave differently than free ones
- Need to correct for:
 - Spin depolarization
 - 2 Nuclear binding
 - 3 Fermi motion of nucleons
 - 4 Off-shellness of nucleons
- To extract Aⁿ₁, we compute:

$$A_{1}^{n} = \frac{F_{2}^{^{3}\text{He}}}{\tilde{P}_{n}F_{2}^{n}} \left[A_{1}^{^{3}\text{He}} - \tilde{P}_{p} \left(\frac{F_{2}^{p}}{F_{2}^{^{3}\text{He}}} \right) A_{1}^{p} \right]$$

• \tilde{P}_i terms include Δ isobar effects:

•
$$\tilde{P}_n = 0.879 + 0.056$$

• $\tilde{P}_p = 2(-0.021) - 0.014$

Backup (6) Nuclear Corrections: A^p₁ Fit

Backup (7)

Flavor Decomposition: Description

- We need g_1^n/F_1^n
 - Compute nuclear corrections on $g_1^{^{3}\mathrm{He}}$ data, then divide the resulting g_1^n by F_1^n
- Fits to $(d+\bar{d})/(u+\bar{u}) \approx d/u, g_1^p/F_1^p$
- Compute $(\Delta q + \Delta \bar{q})/(q + \bar{q})$ for u and d as:

$$\frac{\Delta u + \Delta \bar{u}}{u + \bar{u}} = \frac{4}{15} \frac{g_1^p}{F_1^p} \left(4 + \frac{d + \bar{d}}{u + \bar{u}} \right) - \frac{1}{15} \frac{g_1^n}{F_1^n} \left(1 + 4\frac{d + \bar{d}}{u + \bar{u}} \right)$$

$$\frac{\Delta d + \Delta \bar{d}}{d + \bar{d}} = \frac{4}{15} \frac{g_1^n}{F_1^n} \left(4 + \frac{u + \bar{u}}{d + \bar{d}} \right) - \frac{1}{15} \frac{g_1^p}{F_1^p} \left(1 + 4\frac{u + \bar{u}}{d + \bar{d}} \right)$$

• Note: This is for $s, \bar{s} = 0$ (these contributions are small, fold into systematic error)

Backup (8) Flavor Decomposition: Fits

DNP 2013