LHRS Pion Rejector Calibration for d_2^n Progress Report

D. Flay^1

¹Department of Physics Temple University

5/12/09

・ロット (雪) (日) (日)

- E/p
- δ-electrons

3 Summary

- Pion Rejector
- Cerenkov

2 Calibration

- E/p
- δ -electrons

3 Summary

- Pion Rejector
- Cerenkov

Geometry of the Pion Rejector

Pion Rejector

 Two layers of thirty four blocks composed of SF-5 lead glass

(日)

Geometry of the Pion Rejector

Pion Rejector

- Two layers of thirty four blocks composed of SF-5 lead glass
- Dimensions: $14.5 \times 14.5 \times 30 \text{ cm}^3 / 14.5 \times 14.5 \times 35 \text{ cm}^3$

(日)

Geometry of the Pion Rejector

Pion Rejector

- Two layers of thirty four blocks composed of SF-5 lead glass
- Dimensions: $14.5 \times 14.5 \times 30 \text{ cm}^3 / 14.5 \times 14.5 \times 35 \text{ cm}^3$
- Radiation Length: $X_0 = 2.55 \text{ cm} \Rightarrow$ thickness of block: 5.7 X_0 (traversed by incident e^-)

• δ -electrons

3 Summary

- Pion Rejector
- Cerenkov

• Alignment of electron peaks in ADC spectra for each block corresponding to the incident particle momentum p

A D > A P > A D > A D >

- Alignment of electron peaks in ADC spectra for each block corresponding to the incident particle momentum *p*
- Overall effect alignment of E_{dep}/p at 1. Two calibrations were used so far. One for p = 0.6 GeV/c and one for p = 1.20 GeV/c, which was applied to all other kinematics

A D > A P > A D > A D >

E/p (2)

 \rightarrow plots obtained by Cerenkov cut above 3 p.e. (\sim 600 channels in ADC)

• Fit of E_{dep}/p according to (call this fit #1):

$$f_1(x) = a_1 e^{a_2} e^{-\frac{1}{2} \left(\frac{x-a_3}{a_4}\right)^2} + a_5 x + a_6 x^2 + a_7 x^3 + a_8 x^4$$

 $\rightarrow a_i$ are parameters We see a smaller peak at low $E_{dep}/p \Rightarrow \text{knock-on } (\delta) e^{-2p}$

E/p (3)

 We see from the plot that the peak at 1 is not a pure gaussian. Left edge seems to indicate leakage of energy in blocks (more on this later)

(日)

- We see from the plot that the peak at 1 is not a pure gaussian. Left edge seems to indicate leakage of energy in blocks (more on this later)
- Need to make better cuts in order to sharpen up this peak (reduce σ) ⇒ geometrical cuts, corresponding to better sums of blocks to recover lost energy?

-	1	1 4 1
H'	lm	(/)
Ľ	D	(4)
/	1	× /

Table: E/f	p Calibration	Results	(Preliminary)
--------------	---------------	---------	---------------

$p \; [\text{GeV/c}]$	$E_{\text{beam}} [\text{GeV}]$	$E_{\rm dep}/p$	σ	σ/p	χ^2/ndf
0.60	4.73	1.019	0.1357	0.2262	1.04
0.80	4.73	0.983	0.1142	0.1428	1.52
0.90	5.89	0.987	0.1121	0.1246	1.25
1.13	5.89	1.004	0.1102	0.0975	1.09
1.20	5.89	1.012	0.1157	0.0964	1.05
1.27	5.89	1.008	0.1099	0.0866	1.04
1.42	5.89	1.017	0.1158	0.0815	1.15
1.51	4.73	1.021	0.1145	0.0758	1.23
1.70	5.89	1.024	0.1178	0.0693	1.08

E/p (5)

• Fit of σ/p vs. p according to $f(x) = a_1 + a_2/\sqrt{x}$

E/*p* (5)

- Fit of σ/p vs. p according to $f(x) = a_1 + a_2/\sqrt{x}$
- a₂ is a measure of how good the calibration is ⇒ resolution of the calorimeter. Here, we see that the resolution is ~ 28%. It should be ~ 8 10%. Hence, we need to go back and properly sum the blocks through (geometrical) cuts

• δ -electrons

- Pion Rejector
- Cerenkov

 δ -electrons(1) Loss & Contamination

• We see at low E/p we have a smaller peak – this must be due to δ -electrons which cannot be removed by the cut on the Cerenkov

(日)

- We see at low E/p we have a smaller peak this must be due to δ -electrons which cannot be removed by the cut on the Cerenkov
- To see the loss and contamination to our peak of interest, we try various fits to the data:

ヘロト ヘ戸ト ヘヨト ヘヨト

δ -electrons(2) Loss & Contamination

δ -electrons(3) Loss & Contamination

• Fit # 2 according to:

$$f_2(x) = a_1 e^{-a_2} e^{-\frac{1}{2} \left(\frac{x-a_2}{a_3}\right)^2} + a_4 e^{-x}$$

・ロト ・聞ト ・ヨト ・ヨト

• Fit # 2 according to:

$$f_2(x) = a_1 e^{-a_2} e^{-\frac{1}{2} \left(\frac{x-a_2}{a_3}\right)^2} + a_4 e^{-x}$$

 This shows us the optimal place to put our cut on E/p to select good electrons with the least amount of loss

ヘロト ヘ回ト ヘヨト ヘヨト

• Fit # 2 according to:

$$f_2(x) = a_1 e^{-a_2} e^{-\frac{1}{2} \left(\frac{x-a_2}{a_3}\right)^2} + a_4 e^{-x}$$

(日)

- This shows us the optimal place to put our cut on E/p to select good electrons with the least amount of loss
- Need to do this for each kinematic

2 Calibration

- E/p
- δ -electrons

• Still need calibration of:

- $p = 0.60 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
- $p = 1.42 \text{ GeV/c}, E_{\text{beam}} = 4.73 \text{ GeV}$
- $p=1.51~{\rm GeV/c},\,E_{\rm beam}=5.89~{\rm GeV}$

・ロット (雪) (日) (日)

- Still need calibration of:
 - $p = 0.60 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
 - $p = 1.42 \text{ GeV/c}, E_{\text{beam}} = 4.73 \text{ GeV}$
 - p = 1.51 GeV/c, $E_{\text{beam}} = 5.89$ GeV
- Need better fit to E_{dep}/p vs. p data / multiple calibrations?

・ロット (雪) (日) (日)

- Still need calibration of:
 - $p = 0.60 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
 - p = 1.42 GeV/c, $E_{\text{beam}} = 4.73$ GeV
 - $p = 1.51 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
- Need better fit to E_{dep}/p vs. p data / multiple calibrations?
- Determine geometrical cut in PR to recover energy loss

A D > A P > A D > A D >

- Still need calibration of:
 - $p = 0.60 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
 - p = 1.42 GeV/c, $E_{\text{beam}} = 4.73$ GeV
 - $p = 1.51 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
- Need better fit to E_{dep}/p vs. p data / multiple calibrations?
- Determine geometrical cut in PR to recover energy loss
- Need more statistics for E_{dep}/p vs. $p, \sigma/p$ vs. p plots?

・ロット (雪) (日) (日)

- Still need calibration of:
 - $p = 0.60 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
 - p = 1.42 GeV/c, $E_{\text{beam}} = 4.73$ GeV
 - $p = 1.51 \text{ GeV/c}, E_{\text{beam}} = 5.89 \text{ GeV}$
- Need better fit to E_{dep}/p vs. p data / multiple calibrations?
- Determine geometrical cut in PR to recover energy loss
- Need more statistics for E_{dep}/p vs. $p, \sigma/p$ vs. p plots?
- Calculate efficiency of electron selection/pion rejection for PR ⇒ placement of/efficiency of E/p cut for all kinematics

・ロット (雪) ・ (日) ・ (日)

2 Calibration

- E/p
- δ -electrons

Cerenkov

Introduction 00

What's Next? (2) Cerenkov

• Check calibration from Transversity (1 p.e. at ADC channel 200)

・ロト ・聞ト ・ヨト ・ヨト

What's Next? (2) Cerenkov

- Check calibration from Transversity (1 p.e. at ADC channel 200)
- Number of p.e.'s for each mirror

A D > A P > A D > A D >

What's Next? (2) Cerenkov

- Check calibration from Transversity (1 p.e. at ADC channel 200)
- Number of p.e.'s for each mirror
- Efficiencies

A D > A P > A D > A D >