LHRS Analysis for d_2^n

SAMC and Acceptance Cut Study

D. Flay

4/1/11

Outline

- Acceptance
 - SAMC
 - Edge Effects
 - Weight Factor
- Summary

SAMC (1)

p = 0.60 GeV, 4-pass: Target Variables

SAMC (2)

 $p=0.60~{
m GeV},$ 4-pass: Target Variables (Reconstructed and Data Only)

SAMC (3)

 $p = 0.60 \,\mathrm{GeV}$, 4-pass: Focal Plane Variables

Edge Effects (1) Target Variables y and ϕ

- Before choosing cuts on the acceptance, we need to remove edge effects
 - Look at the plot of y_{tg} vs. ϕ_{tg}

• Cut: $|y_{tg} + 2.9\phi_{tg}| < 0.06$ && $|y_{tg} - 2.9\phi_{tg}| < 0.06$

Edge Effects (2) Target Variables

Applying this cut to all target variables:

Weight Factor (1) Definition

- The weight factor w contributes to the cross section and needs to be evaluated for each momentum bin
- The weight factor is defined by:

$$w(y_{tg}, \theta_{tg}, \phi_{tg}, \delta p/p, Z_r) = \frac{N_f(y_{tg}, \theta_{tg}, \phi_{tg}, \delta p/p, Z_r)}{N_i(y_{tg}, \theta_{tg}, \phi_{tg}, \delta p/p, Z_r)}$$

- $N_i=$ The number of events in a given bin defined by cuts on $y_{tg},\, \theta_{tg},\, \phi_{tg},\, \delta p/p,\, Z_r$ and the edge effect cut applied to the generated target variables
- N_f = The number of events that satisfy the conditions on N_i and satisfy the condition that the event was successfully propagated to the focal plane

Weight Factor (2) Cut Sets

- Consider 22 cut sets
 - First set: wide cut on each variable based on the edge effect study
 - Vary the cut window width for each variable, while holding the cut windows of all other variables constant
 - Values shown for each variable correspond to 1/2 the full width of the cut
 - From this we determine the best cut on each variable, yielding the optimal cut set (#22)

Weight Factor (3) Results

Cut Sets for Acceptance Study						
Set #	$\delta p/p$ (%)	θ_{tg} (mrad)	ϕ_{tg} (mrad)	y_{tg} (cm)	Z_r (cm)	w
1	4	50	20	5	10	0.7005 ± 0.0071
2	0.5	50	20	5	10	0.7219 ± 0.0147
3	1	50	20	5	10	0.7219 ± 0.0147
4	2	50	20	5	10	0.7204 ± 0.0103
5	3	50	20	5	10	0.7138 ± 0.0084
6	4	10	20	5	10	0.7027 ± 0.0161
7	4	20	20	5	10	0.7015 ± 0.0114
8	4	30	20	5	10	0.7024 ± 0.0093
9	4	40	20	5	10	0.7036 ± 0.0080
10	4	50	10	5	10	0.7000 ± 0.0084
11	4	50	13	5	10	0.7000 ± 0.0084
12	4	50	17	5	10	0.7005 ± 0.0071
13	4	50	20	5	10	0.7005 ± 0.0071
14	4	50	20	1	10	0.6955 ± 0.0127
15	4	50	20	2	10	0.7038 ± 0.0095
16	4	50	20	3	10	0.7034 ± 0.0082
17	4	50	20	4	10	0.7013 ± 0.0075
18	4	50	20	5	2	0.6969 ± 0.0109
19	4	50	20	5	4	0.7038 ± 0.0083
20	4	50	20	5	6	0.7012 ± 0.0074
21	4	50	20	5	8	0.7005 ± 0.0071
22	3.5	40	20	4.5	10	0.7037 ± 0.0084

Weight Factor (4)

Target Variables: Optimal Cut + Diamond Cut

Summary

- Good agreement between SAMC and the data in each variable
- We need to remove edge effects (as seen in y_{tg} and ϕ_{tg}) when studying the acceptance
- Optimized cut set on all five target variables yields a weight factor of $w\sim 0.7$
 - Solid Angle: $\Delta\Omega = \Delta\theta\Delta\phi = 2\cdot(40~{\rm mrad})\cdot 2\cdot(20~{\rm mrad}) = 3.2~{\rm msr}$
 - Effective Solid Angle: $w\Delta\Omega = 2.24 \text{ msr}$

What's Next?

- Acceptance:
 - Gather more statistics in SAMC
 - Extend study to all other kinematics
- Cross Section:
 - Apply new acceptance cuts and study the effects
 - Nitrogen:
 - Determine density and dilution factors
 - Calculate σ_N and compare to QFS
- Asymmtery
 - Need a fresh replay and skim no helicity variable (currently)

