BigBite Analysis

5.89 GeV Cut Acceptances, Preliminary Asymmetries and Preliminary d2 Statistical Precision

Matthew Posik

¹Temple University Philadelphia, PA 19122

03/01/2012

Matthew Posik (Temple University)

Outline

- 5.89 GeV Cut Acceptances
- 2 N2 Dilution Factors
- Preliminary Asymmetries
 - Preliminary A₁, A₂
 - **5** Preliminary g_1, g_2
- 6 Preliminary d₂ Statistical Precision
 - 7 What's Next

< 回 > < 三 > < 三 >

Cut Acceptance Procedure

- Track cut acceptance over entire 5.89 GeV data set
- Cut acceptance is defined as:
- $\frac{n_{\mathrm{passed}}}{n_{\mathrm{total}}}$, where
- n_{total}: number of tracks
- n_{passed}: number of total tracks that passed a selected cut

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

5.89 GeV Cut Acceptance (1)

Figure: Shows cut acceptance for selected cuts over 5.89 GeV data set.

Matthew Posik (Temple University)

э

5.89 GeV Cut Acceptance (2)

Figure: Shows cut acceptance for selected cuts over 5.89 GeV data set.

Matthew Posik (Temple University)

э

<ロ> <問> <問> < 回> < 回> 、

5.89 GeV Cut Acceptance (3)

Figure: Shows cut acceptance for selected cuts over 5.89 GeV data set.

э

5.89 GeV Cut Acceptance (4)

Figure: Shows cut acceptance for selected cuts over 5.89 GeV data set.

5.89 GeV Cut Acceptance (5)

Figure: Shows cut acceptance for selected cuts over 5.89 GeV data set.

Matthew Posik (Temple University)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Cut Acceptance Summary

- Track cut acceptance over 5.89 GeV data set jumps around a lot
- Maybe due to:
 - Trigger Threshold changes
 - Pre-scale changes
- Need to see if there is a correlation in the cut acceptance jumps with trigger changes(pre-scale and thresholds)

.

N2 Dilution Factor Definition

$$D_{N_2} = 1 - \frac{Y_{N_2}\rho_{^3He}}{Y_{^3He}\rho_{N_2}}$$

- $Y = \frac{Nps}{Qt_{LT}}$
 - N: Number of electrons
 - ps: T2 pre-scale value
 - t_{LT}: T2 live time
 - Q: charge on target
- $\rho_{^{3}He}$: N_{2} density in ³He cell 0.113 amg
- ρ_{N_2} : N_2 density in ref. cell 7.71 amg
- Take weighted average over all runs for each x-bin
- Used a live time of 1 for the 5.89 GeV analysis (still need to compute)

く 同 ト く ヨ ト く ヨ ト -

4.74 GeV Run Settings

Figure: Shows, from top to bottom, 4.74 GeV T2 trigger pre-scales, total charge on target and T2 trigger live time.

• • • • • • • • • • • •

4.74 GeV Yields

Figure: Shows, the run by run ³He (blue markers) and N₂ (red markers) yields for several bins.

Matthew Posik (Temple University)

4.74 GeV N2 Dilution Factor

Figure: Shows comparison of old N2 dilution factor (red markers) with no live time correction and new N2 dilution factor (blue markers) with live time correction. There is also a modified track match to shower cluster as well as a scintillator cut applied to the new value.

• • • • • • • • • • • • •

5.89 GeV Run Settings

Figure: Shows, from top to bottom, 5.89 GeV T2 trigger pre-scales, total charge on target and T2 trigger live time(not computed yet).

• • • • • • • • • • • •

ъ

5.89 GeV Yields

Figure: Shows, the run by run ³He (blue markers) and N₂ (red markers) yields for several bins (mis-labeled titles).

Matthew Posik (Temple University)

5.89 GeV N2 Dilution Factor

Figure: Shows comparison of new 4.74 GeV N2 dilution factor (red markers) with live time correction and 5.89 GeV N2 dilution factor (blue markers) with no live time correction.

Matthew Posik (Temple University)

ъ

Preliminary Asymmetries

Preliminary Raw Asymmetries

Figure: Preliminary 4.74 and 5.89 GeV raw asymmetries.

イロト イヨト イヨト イヨト

Calculating Kinematic Quantities

- The kinematic quantities $W, p, \nu, \theta, \phi, Q^2$ and x were calculated.
- Used 3 runs: 1311(S=270),1479(S=90) and 1547(S=0)
- Extracted the mean value for each x-bin
- Used the rms value as the statistical uncertainty on the quantity

Preliminary 5.89 GeV Kinematic Quantities

Figure: Preliminary 5.89 GeV kinematic quantities.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Forming Physics Asymmetry

Note: From this point on, all error bars shown include raw asymmetry and N_2 dilution statistical errors only

•
$$A_{\parallel} = \frac{A_{\parallel}^{raw}}{P_t P_b D_{N2}}, \ A_{\perp} = \frac{A_{\perp}^{raw}}{P_t P_b D_{N2} cos(\phi)}$$

- *P_t*: target polarization (uses Yawei's values, pumping chamber polarizations)
- P_b : beam polarization
- D_{N2}: Nitrogen dilution factor
- $cos(\phi)$: cosine of the azimuthal angle (out of plane)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminary Asymmetries

Preliminary Physics Asymmetries

Matthew Posik (Temple University)

21/42

ъ

Preliminary Asymmetries

Preliminary Longitudinal and Transverse Asymmetries

Figure: Preliminary 4.74 (red) and 5.89 (blue) GeV longitudinal and transverse asymmetries.

< ロ > < 同 > < 回 > < 回 >

Defining A₁ and A₂

$$A_{1} = c_{1}^{A_{1}} A_{\parallel} + c_{2}^{A_{1}} A_{\perp}$$
$$A_{2} = c_{1}^{A_{2}} A_{\parallel} + c_{2}^{A_{2}} A_{\perp}$$

æ

イロン イ理 とく ヨン イヨン

Preliminary 5.89 GeV A₁ and A₂ Kinematics

Figure: Preliminary 5.89 GeV A1 and A2 kinematics.

Preliminary A1, A2

Preliminary 5.89 GeV A₁ and A₂ Constants

Figure: Preliminary 5.89 GeV A1 and A2 constants.

Preliminary A₁ and A₂

Figure: Preliminary 4.74 and 5.89 GeV A₁ and A₂.

2

Preliminary A₁ World Data

Figure: Preliminary 4.74 and 5.89 GeV A1 compared to previous experiments.

Matthew Posik (Temple University)

27 / 42

Preliminary A₂ World Data

Figure: Preliminary 4.74 and 5.89 GeV A₂ compared to previous experiments.

크

Defining g_1 and g_2

$$g_{1} = \frac{\sigma_{0}}{(\hbar c)^{2}} \left(c_{1}^{g_{1}} A_{\parallel} + c_{2}^{g_{1}} A_{\perp} \right)$$
$$g_{2} = \frac{\sigma_{0}}{(\hbar c)^{2}} \left(c_{1}^{g_{2}} A_{\parallel} + c_{2}^{g_{2}} A_{\perp} \right)$$

•
$$c_1^{g_1} = \left(\frac{MQ^2}{4\alpha^2}\right) \left(\frac{2y}{(1-y)(2-y)}\right)$$

• $c_2^{g_1} = \left(\frac{MQ^2}{4\alpha^2}\right) \left(\frac{2y}{(1-y)(2-y)}\right) tan\left(\frac{\theta}{2}\right)$
• $c_1^{g_2} = -\left(\frac{MQ^2}{4\alpha^2}\right) \left(\frac{y^2}{(1-y)(2-y)}\right)$
• $c_2^{g_2} = \left(\frac{MQ^2}{4\alpha^2}\right) \left(\frac{y^2}{(1-y)(2-y)}\right) \left(\frac{1+(1-y)cos(\theta)}{(1-y)sin(\theta)}\right)$
• $(\hbar c)^2 = 389379 \text{ nb GeV}^2$

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Preliminary 5.89 GeV Total Cross-Section

Figure: Preliminary 5.89 GeV Gauss + Exponential fit to LHRS cross-section

< ロ > < 同 > < 回 > < 回 >

Preliminary g1, g2

Preliminary 5.89 GeV g₁ and g₂ Coefficients

Figure: Preliminary 5.89 GeV g_1 and g_2 coefficients.

Preliminary 5.89 GeV g_1 and g_2

Figure: Preliminary 5.89 GeV g_1 and g_2 .

2

Preliminary 5.89 GeV g₁ World Data

Figure: Preliminary 5.89 GeV g1 compared to other experiments.

< 6 b

Preliminary 5.89 GeV g₂ World Data

Figure: Preliminary 5.89 GeV g2 compared to other experiments.

< 6 b

Computing 5.89 GeV d₂ Statistical Precision

- Compute $d_2(x, Q^2)$ for each x-bin
- Compute the weighted average and error of d₂ over all x-bins
- Weighted error is the statistical precision
- Two ways to compute d₂:
 - $d_2^{(1)}(x,Q^2) \propto g_1,g_2$ • $d_2^{(2)}(x,Q^2) \propto A_{\parallel},A_{\perp}$
- $\delta d_2^{(1)}(Q^2) = 4.79 \times 10^{-4}$
- $\delta d_2^{(2)}(Q^2) = 3.68 \times 10^{-4}$

A (10) F (10)

Preliminary d₂ Statistical Precision

Preliminary 5.89 GeV d₂ Statistical Precision

Figure: Sum of d₂ over all x-bins was done to estimate preliminary statistical error on d₂.

< 6 b

- Look more into in-plane angle shift
- Compute 5-pass live times
- Look at raw pion asymmetries
- Apply diffuse equation to EPR polarizations

4 D K 4 B K 4 B K 4

Preliminary A₁ World Data

Figure: Preliminary 4.74 and 5.89 GeV A1 compared to previous experiments.

글▶ 글

• • • • • • • • • • • •

Preliminary A₂ World Data

Figure: Preliminary 4.74 and 5.89 GeV A₂ compared to previous experiments.

크

Preliminary 5.89 GeV g₁ and g₂

Figure: Preliminary 5.89 GeV g_1 and g_2 .

크

Preliminary 5.89 GeV g₁ World Data

Figure: Preliminary 5.89 GeV g1 compared to other experiments.

< 17 ▶

Preliminary 5.89 GeV g₂ World Data

Figure: Preliminary 5.89 GeV g2 compared to other experiments.

≣ →