

d₂ⁿ and A₁ⁿ: Recent Results and Outlook

Diana Parno CENPA, University of Washington

2013 Users' Group Meeting, Jefferson Lab

Outline

- Deep inelastic scattering and structure functions
- d_2 and A_1 for the neutron
- E06-014 in Hall A at 6 GeV
- Outlook at 12 GeV

Deep Inelastic Scattering

- Start with a polarized electron and a polarized nucleon
- They exchange a virtual photon
- Virtual photon-nucleon vertex contains nucleon structure information
- Inclusive measurement: only detect scattered electrons

DIS Vocabulary

 Let's define some useful variables in the lab frame (nucleon rest frame)

$$Q^2 \equiv -q^2 = 2EE'(1 - \cos\theta)$$

Four-momentum transfer

Electron energy loss (lab frame)

 $v \equiv \frac{p \cdot q}{M} = E - E'$ $x \equiv \frac{Q^2}{2p \cdot q} = \frac{Q^2}{2Mv}$

Bjorken x (momentum fraction)

Nucleon Structure Functions

• Scattering from a point particle is straightforward:

 To describe scattering from a complex structure – like a nucleon – you need structure functions:

$$\frac{d^2\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{1}{v}F_2(x,Q^2) + \frac{2}{M}F_1(x,Q^2)\right] \tan^2\frac{\theta}{2}$$

Polarized Structure Functions

• Now add relative spin orientations to the picture

$$\frac{d^2\sigma^{\downarrow\uparrow}}{d\Omega dE'} - \frac{d^2\sigma^{\uparrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{Q^2 E} \left[\frac{E + E'\cos\theta}{Mv} g_1(x,Q^2) - \frac{Q^2}{Mv^2} g_2(x,Q^2) \right]$$

• $F_1(x, Q^2)$ and $g_1(x, Q^2)$ have a simple meaning in the quark-parton model:

$$F_{1}(x,Q^{2}) = \frac{1}{2} \sum_{i} e_{i}^{2} \left[q_{i}^{\uparrow}(x,Q^{2}) + q_{i}^{\downarrow}(x,Q^{2}) \right]$$
$$g_{1}(x,Q^{2}) = \frac{1}{2} \sum_{i} e_{i}^{2} \left[q_{i}^{\uparrow}(x,Q^{2}) - q_{i}^{\downarrow}(x,Q^{2}) \right]$$

• From g_1 and g_2 , we form the quantity d_2 for the nucleon:

$$d_2(Q^2) = \int_0^1 x^2 \left(2g_1(x,Q^2) + 3g_2(x,Q^2) \right) dx$$

We need precise data at large x

- Clean probe of twist-3 physics (quark-gluon correlations)
- 2σ discrepancy between lattice prediction and measurement of neutron d₂

A_1

• Picture the polarizations at the hadron vertex:

Flavor decomposition of spin structure from A₁ⁿ and A₁^p combined

More Neutron DIS Data Needed

 ... at Q² ≈ 5 GeV² and large *x*.

----- Leader, Sidorov and Stamenov, PRD **75**: 074027 (2007)

— Avakian et al, PRL **99**: 082001 (2007)

Outline

- Deep inelastic scattering and structure functions
- d_2 and A_1 for the neutron
- E06-014 in Hall A at 6 GeV
- Outlook at 12 GeV

E06-014 in Hall A

for Experimental Nuclear Physics and Astrophysics

Polarized ³He Target

- 87% of the time, the neutron carries the ³He nuclear spin
- Polarized ³He target ≈ polarized neutron target
- Hybrid spin-exchange optical pumping
- 1. Polarize Rb via optical pumping
- 2. Rb-K interactions polarize K
- 3. K-³He interactions polarize ³He

Ameya Kolarkar, PhD thesis, 2008

E06-014 Kinematics

Preliminary E06-014 Results

- What you *will* see accounted for:
 - Beam polarization
 - Target polarization
 - N₂ dilution in target cell
 - Dilution from e⁺/e⁻ pairs produced in π^0 decay
 - Basic nuclear corrections (effective polarization model)
- What you **won't** see accounted for:
 - Radiative corrections (nearly complete)
 - Asymmetries from e⁺/e⁻ pairs
 - Some systematics (cut selection, kinematics)
 - More sophisticated nuclear corrections

Deconvolution method in progress – Melnitchouk et al.

$x^2g_1^n$ (d₂ⁿ integrand)

- Lacks radiative / pair-production corrections
- Systematic error bars will grow
 - Preliminary nuclear-correction method

$x^2g_2^n$ (d₂ⁿ integrand)

- Lacks radiative / pair-production corrections
- Systematic error bars will grow
- Preliminary nuclear-correction method

He-3

- Lacks radiative / pair-production corrections
- Systematic error bars will grow
- No nuclear correction yet

Outline

- Deep inelastic scattering and structure functions
- d_2 and A_1 for the neutron
- E06-014 in Hall A at 6 GeV
- Outlook at 12 GeV

E12-06-121: d₂ⁿ at 12 GeV

- E_e =11 GeV, upgraded ³He target
- SHMS: large x range at nearly constant Q^2
- HMS: fill in gaps at low x

uclear Physics and Astrophysic

Approved with A- rating 29 days in Hall C

- Measure d₂ⁿ at 4
 constant Q² values
- Error at each point will be comparable to E06-014

Spokespeople: T. Averett W. Korsch Z.-E. Meziani B. Sawatzky

E12-06-110: A₁ⁿ at 12 GeV

- $E_e = 11$ GeV, upgraded ³He target
- Simultaneous HMS, SHMS measurements improve statistics

Approved with A rating 36 days in Hall C

E12-06-122: A₁ⁿ at 12 GeV

- E_e =6.6, 8.8 GeV; upgraded ³He target
- BigBite: Primary measurement
- Left HRS: Cross-check (lower statistics)

Approved with A- rating 23 days in Hall A

- Third set of Q² values for interpolation
- Test of open-geometry measurement technique
 - Spokespeople:
 - T. Averett
 - G. Cates
 - N. Liyanage
 - G. Rosner
 - B. Wojtsekhowski
 - X. Zheng

Conclusions

- DIS measurements of d_2^n and A_1^n at large x will
 - test Lattice QCD and pQCD
 - probe higher-twist effects
 - explore nucleon spin structure
- E06-014 data will address these questions
 - Stay tuned for final results
- The 12-GeV program will improve the picture even further
 - Push to higher *x*
 - Explore Q² evolution

Acknowledgments

- The E06-014 collaboration, *especially* David Flay, Matthew Posik, Brad Sawatzky, Gregg Franklin, and Zein-Eddine Meziani
- The Accelerator Division for making the measurements
 possible

The Transversity collaboration for setup help and many of the pictures used in this talk

Thank you!

Backup Slides

Polarized Structure Functions

Longitudinally polarized beam and target

uclear Physics and Astrophys

$$\frac{d^2\sigma^{\downarrow\uparrow}}{d\Omega dE'} - \frac{d^2\sigma^{\uparrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2 E'}{Q^2 E} \left[\frac{E + E'\cos\theta}{Mv} g_1(x,Q^2) - \frac{Q^2}{Mv^2} g_2(x,Q^2) \right]$$

 \overrightarrow{k}

• Longitudinally polarized beam and transversely polarized target

Polarized Electron Beam

 The electrons on target are longitudinally polarized... but how well polarized are they?

$$P_e = \left| \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \right|$$

- Two measurement methods for E06-014:
 - Møller scattering $(e^-e^- \rightarrow e^-e^-)$
 - Destructive measurement
 - Compton scattering $(e^{-\gamma} \rightarrow e^{-\gamma})$
 - Non-destructive measurement
 - Circularly polarized photons

uclear Physics and Astrophy

Longitudinally polarized electrons

BigBite

Adapted from Xin Qian, PhD thesis, 2010

- 3 multiwire drift chambers
 - Tracking
 - Momentum
- Gas Čerenkov
 - Exclude pions from trigger
 - 2 lead-glass calorimeters
 - Energy
 - Particle identification
 - Scintillator plane
 - Timing

5.9-GeV Cross Sections

ENPA

ental Nuclear Physics and Astrophy

4.7-GeV Cross Sections

