LHRS Analysis for dⁿ₂

Acceptance and SAMC Update Using Carbon Foils, Cross Sections and Positive Polarity Data

D. Flay

8/30/12

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 1/16

Outline

1 Acceptance

Comparing ³He (Long) and ¹²C (Foil) Targets

2 A Look Back at Cross Sections ³He Quasi-Elastic Tail

³He (Long) Target Target Variables: E_s = 4730 MeV, E_p = 600 MeV

¹²C (Foil) Target (1) Target Variables: $E_s = 4730$ MeV, $E_p = 600$ MeV

4/16

イロン イボン イヨン イヨン

¹²C (Foil) Target (2) A look at the Data

Data and SAMC With Target Cuts (1) Focal Plane Variables: E_s = 4730 MeV, E_p = 600 MeV

≣ ৩৭ে 6/16

Data and SAMC With Target Cuts (2) Target Variables: E_s = 4730 MeV, E_p = 600 MeV

<ロ> < (回)、 < (G)、 </p>
7/16

A Look Back at Cross Sections (1) Born Cross Sections

 When comparing our data to the F1F209 model, there's a considerable difference in slope as we approach low Ep

A Look Back at Cross Sections (2) ³He Quasi-Elastic Tail

 In the RC's, the integration is carried out from the π production threshold down to the E_p point of interest ⇒ we need to subtract off the ³He QE tail

Positive Polarity Data

Scintillator ADC vs. E Plots for PID

- Protons and deuterons contaminate the π^+ sample when calculating π^+ cross sections
- · Could we use the scintillator ADCs vs. E to help with PID?

< ロ > < 同 > < 回 > < 回 >

Summary

- Acceptance
 - It's clear that something odd is happening at the edge of the acceptance in y_{tg} (Z_{react})
 - Cutting on the central region in y_{tg} shows good agreement between SAMC and data, removing the structure seen in SAMC's θ_{tg}
- Cross Sections
 - Considering the RC's are carried out from π production threshold down to the E_p point of interest, we will need to subtract off the ^3He QE tail from the data before applying RC's
- π^+ Event Selection
 - We can identify events from the scintillator vs. E plot, but we don't gain much by using it

What's Next?

- Cross Sections
 - Subtract ³He QE tail from radiated data and re-apply RC's
 - ³He QE Tail Systematic errors
 - Vary t_b , t_a for external radiation calculations
 - Try different form factors for the neutron/proton (?)

$\label{eq:appendix for a state of the stat$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

13/16

Appendix (2) Target Variables: E_s = 4730 MeV, E_p = 600 MeV

Appendix (3) Focal Plane Variables: $E_s = 4730 \text{ MeV}$, $E_p = 600 \text{ MeV}$

15/16

3

Appendix (4) Target Variables: E_s = 4730 MeV, E_p = 600 MeV

