Optics Summary #### LHRS Analysis for d_2^n Optics Study #### D. Flay 4/24/10 Optics Summary #### **Outline** - Optics - Coordinate Systems - Optimization Matrix - Characteristic Plots - Summary - The optics of the spectrometer serves to transform variables from one set of coordinates to another - We have five coordinate systems: - Hall Coordinate System (HCS) - Target Coordinate System (TCS) - Detector Coordinate System (DCS) - Transport Coordinate System (TRCS) - Focal Plane Coordinate System (FCS) ## Optics (2) Coordinate Systems: Hall Coordinate System ullet The origin of the HCS is defined by the intersection of the e^- beam and the vertical symmetry axis of the target coordinate system ### Optics (3) Coordinate Systems: Target Coordinate System - The LHRS has its own TCS - \hat{z}_{tg} is defined by the spectrometer's central ray passing through the center of the sieve collimator - The sieve is placed right before the dipole magnet, used for calibration purposes - Looking along the central ray, \hat{y}_{tg} points to the left, while \hat{x}_{tg} points vertically down - See next slide for a diagram of the TCS #### Optics (4) Coordinate Systems: Target Coordinate System Temple University Hadronic & Nuclear Physics Group ### Optics (5) Coordinate Systems: Target Coordinate System Careful examination of the previous slide reveals: $$z_{\text{react}} = -(y_{tg} + D_{\text{y}}) \frac{\cos \phi_{tg}}{\sin(\Theta_0 + \phi_{tg})} + x_{\text{beam}} \cot(\Theta_0 + \phi_{tg})$$ $$y_{tg} = y_{\text{sieve}} - L \tan \phi_{tg}$$ $$x_{tg} = x_{\text{sieve}} - L \tan \theta_{tg}$$ $$x_{\text{sieve}} = -\tan \phi_{tg} \frac{z_{\text{react}} \cos \Theta_0}{\cos \phi_{tg}} - y_{\text{beam}} + L \tan \theta_{tg}$$ These quantities will be important for the check of our current optics matrix, so we list them here ### Optics (6) Coordinate Systems: Detector Coordinate System - The intersection of wire #184 of plane u_1 and the perpendicular projection of wire #184 from the v_1 plane forms the origin of the DCS - \hat{z} points vertically up, with \hat{x} along the (longer) symmetry axis of the lower VDC plane, away from the Hall center # Optics (7) Coordinate Systems: Transport Coordinate System - The TRCS is a rotated coordinate system, with the DCS rotated clockwise about the \hat{y} -axis by 45° - Ideally, \hat{z} of the TRCS coincides with the central ray of the spectrometer - Serves as an intermediate stage to get from the DCS to FCS - Another rotated coordinate system - Due to the focusing of the magnets, particles incident on the detector package at different angles that have the same $|\vec{p}|$ will be focused at the focal plane - Therefore, the relative momentum $\delta \equiv \Delta p/p = (p-p_0)/p_0$ is a function of only x_{tr} and p_0 - The FCS is obtained by rotating the DCS about its \hat{y} -axis through an angle $\rho\left(x_{tr}\right)$ with the \hat{z} -axis parallel to the alertlocal central ray - This has the condition $\theta_{tq} = \phi_{tq} = 0$ for a given δ, x_{tr} Temple University Hadronic & Nuclear Physics Group ### Optics (9) Connecting the Coordinate Systems - For each event, the two angular coordinates $(\theta_{det}, \phi_{det})$ and two spatial coordinates (x_{det}, y_{det}) are measured at the focal plane (S1) - x_{det} , θ_{det} give the position of the particle and the tangent of the angle made by the trajectory along the vertical (dispersive) direction - y_{det} , ϕ_{det} give the position of the particle and the tangent of the angle made by the trajectory along the horizontal (lateral) direction - Corrections to these variables are made to account for any detector offsets from the ideal central ray, which yields the focal plane coordinates $(x_{fp}, \theta_{fp}, y_{fp}, \phi_{fp})$ - The focal plane variables are then used to determine the corresponding target system variables by use of the optics matrix - The optics matrix transforms our variables from the detector system to the target system - Allows for the realization of the full potential of the hardware - To first order, due to the mid-plane symmetery of the LHRS, we have: $$\begin{pmatrix} \delta \\ \theta \\ y \\ \phi \end{pmatrix}_{tg} = \begin{pmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & 0 & 0 \\ 0 & 0 & \langle y | y \rangle & \langle y | \phi \rangle \\ 0 & 0 & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{pmatrix} \cdot \begin{pmatrix} x \\ \theta \\ y \\ \phi \end{pmatrix}_{fp}$$ #### Optics (11) Optimization Matrix: Fourth Orde • The optimization is usually performed to fourth order, using: $$\begin{pmatrix} \delta \\ \theta \\ y \\ \phi \end{pmatrix}_{tg} = \begin{pmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & \langle \delta | y \rangle & \langle \delta | \phi \rangle \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & \langle \theta | y \rangle & \langle \theta | \phi \rangle \\ \langle y | x \rangle & \langle y | \theta \rangle & \langle y | y \rangle & \langle y | \phi \rangle \\ \langle \phi | x \rangle & \langle \phi | \theta \rangle & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{pmatrix} \cdot \begin{pmatrix} x \\ \theta \\ y \\ \phi \end{pmatrix}_{fp}$$ • The explicit equations for each variable take the form: $$\begin{array}{rcl} \delta & = & D_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ \theta_{tg} & = & T_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ y_{tg} & = & Y_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ \phi_{tg} & = & P_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \end{array}$$ ### Optics (12) Optimization Matrix: Fourth Order • The tensors $D_{jkl}, T_{jkl}, Y_{jkl}, P_{jkl}$ are polynomials in x_{fp} : $$D_{jkl} = C_{ijkl}^D x_{fp}^i$$ $$T_{jkl} = C_{ijkl}^T x_{fp}^i$$ $$Y_{jkl} = C_{ijkl}^Y x_{fp}^i$$ $$P_{jkl} = C_{ijkl}^P x_{fp}^i$$ • We sum over repeated indices (pp. 11-12) - In order to test our current matrix, we need certain plots to see how 'aligned' our coordinates are - We examine six plots: - z_{react}: shows the reaction vertex for each foil from the multi-Carbon foil target is, as compared to the nominal (survey) values - θ_{tg} vs. ϕ_{tg} for each foil - y_{tg} vs. ϕ_{tg} for each foil - dp_{kin} for each foil: shows the elastic peak reconstruction when performing a delta (momentum) scan on the Carbon target - x_{sieve} vs. y_{sieve}: shows how well the sieve is reconstructed w.r.t. nominal values - $p_0(1+\delta)$ for each foil #### What's Next? - Investigate the significance behind a few of the plots I've mentioned (θ_{tg} vs. ϕ_{tg}, y_{tg} vs. $\phi_{tg}, p_0(1+\delta)$) as the phase space plots seem to be superfluous w.r.t. $x_{\rm sieve}$ vs. $y_{\rm sieve}$, and the latter being superfluous w.r.t. the $dp_{\rm kin}$ plot. . . - Get together needed data (dⁿ₂/transversity?) and generate the plots mentioned