Optics Summary

LHRS Analysis for d_2^n

Optics Study

D. Flay

4/24/10

Optics Summary

Outline

- Optics
 - Coordinate Systems
 - Optimization Matrix
 - Characteristic Plots
- Summary

- The optics of the spectrometer serves to transform variables from one set of coordinates to another
- We have five coordinate systems:
 - Hall Coordinate System (HCS)
 - Target Coordinate System (TCS)
 - Detector Coordinate System (DCS)
 - Transport Coordinate System (TRCS)
 - Focal Plane Coordinate System (FCS)

Optics (2) Coordinate Systems: Hall Coordinate System

ullet The origin of the HCS is defined by the intersection of the e^- beam and the vertical symmetry axis of the target coordinate system

Optics (3) Coordinate Systems: Target Coordinate System

- The LHRS has its own TCS
- \hat{z}_{tg} is defined by the spectrometer's central ray passing through the center of the sieve collimator
 - The sieve is placed right before the dipole magnet, used for calibration purposes
- Looking along the central ray, \hat{y}_{tg} points to the left, while \hat{x}_{tg} points vertically down
- See next slide for a diagram of the TCS

Optics (4) Coordinate Systems: Target Coordinate System

Temple University Hadronic & Nuclear Physics Group

Optics (5) Coordinate Systems: Target Coordinate System

Careful examination of the previous slide reveals:

$$z_{\text{react}} = -(y_{tg} + D_{\text{y}}) \frac{\cos \phi_{tg}}{\sin(\Theta_0 + \phi_{tg})} + x_{\text{beam}} \cot(\Theta_0 + \phi_{tg})$$

$$y_{tg} = y_{\text{sieve}} - L \tan \phi_{tg}$$

$$x_{tg} = x_{\text{sieve}} - L \tan \theta_{tg}$$

$$x_{\text{sieve}} = -\tan \phi_{tg} \frac{z_{\text{react}} \cos \Theta_0}{\cos \phi_{tg}} - y_{\text{beam}} + L \tan \theta_{tg}$$

 These quantities will be important for the check of our current optics matrix, so we list them here

Optics (6) Coordinate Systems: Detector Coordinate System

- The intersection of wire #184 of plane u_1 and the perpendicular projection of wire #184 from the v_1 plane forms the origin of the DCS
- \hat{z} points vertically up, with \hat{x} along the (longer) symmetry axis of the lower VDC plane, away from the Hall center

Optics (7) Coordinate Systems: Transport Coordinate System

- The TRCS is a rotated coordinate system, with the DCS rotated clockwise about the \hat{y} -axis by 45°
- Ideally, \hat{z} of the TRCS coincides with the central ray of the spectrometer
- Serves as an intermediate stage to get from the DCS to FCS

- Another rotated coordinate system
- Due to the focusing of the magnets, particles incident on the detector package at different angles that have the same $|\vec{p}|$ will be focused at the focal plane
- Therefore, the relative momentum $\delta \equiv \Delta p/p = (p-p_0)/p_0$ is a function of only x_{tr} and p_0
- The FCS is obtained by rotating the DCS about its \hat{y} -axis through an angle $\rho\left(x_{tr}\right)$ with the \hat{z} -axis parallel to the alertlocal central ray
 - This has the condition $\theta_{tq} = \phi_{tq} = 0$ for a given δ, x_{tr}

Temple University Hadronic & Nuclear Physics Group

Optics (9) Connecting the Coordinate Systems

- For each event, the two angular coordinates $(\theta_{det}, \phi_{det})$ and two spatial coordinates (x_{det}, y_{det}) are measured at the focal plane (S1)
 - x_{det} , θ_{det} give the position of the particle and the tangent of the angle made by the trajectory along the vertical (dispersive) direction
 - y_{det} , ϕ_{det} give the position of the particle and the tangent of the angle made by the trajectory along the horizontal (lateral) direction
- Corrections to these variables are made to account for any detector offsets from the ideal central ray, which yields the focal plane coordinates $(x_{fp}, \theta_{fp}, y_{fp}, \phi_{fp})$
- The focal plane variables are then used to determine the corresponding target system variables by use of the optics matrix

- The optics matrix transforms our variables from the detector system to the target system
 - Allows for the realization of the full potential of the hardware
- To first order, due to the mid-plane symmetery of the LHRS, we have:

$$\begin{pmatrix} \delta \\ \theta \\ y \\ \phi \end{pmatrix}_{tg} = \begin{pmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & 0 & 0 \\ 0 & 0 & \langle y | y \rangle & \langle y | \phi \rangle \\ 0 & 0 & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{pmatrix} \cdot \begin{pmatrix} x \\ \theta \\ y \\ \phi \end{pmatrix}_{fp}$$

Optics (11) Optimization Matrix: Fourth Orde

• The optimization is usually performed to fourth order, using:

$$\begin{pmatrix} \delta \\ \theta \\ y \\ \phi \end{pmatrix}_{tg} = \begin{pmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & \langle \delta | y \rangle & \langle \delta | \phi \rangle \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & \langle \theta | y \rangle & \langle \theta | \phi \rangle \\ \langle y | x \rangle & \langle y | \theta \rangle & \langle y | y \rangle & \langle y | \phi \rangle \\ \langle \phi | x \rangle & \langle \phi | \theta \rangle & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{pmatrix} \cdot \begin{pmatrix} x \\ \theta \\ y \\ \phi \end{pmatrix}_{fp}$$

• The explicit equations for each variable take the form:

$$\begin{array}{rcl} \delta & = & D_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ \theta_{tg} & = & T_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ y_{tg} & = & Y_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \\ \phi_{tg} & = & P_{jkl}\theta_{fp}^{j}y_{fp}^{k}\phi_{fp}^{l} \end{array}$$

Optics (12) Optimization Matrix: Fourth Order

• The tensors $D_{jkl}, T_{jkl}, Y_{jkl}, P_{jkl}$ are polynomials in x_{fp} :

$$D_{jkl} = C_{ijkl}^D x_{fp}^i$$

$$T_{jkl} = C_{ijkl}^T x_{fp}^i$$

$$Y_{jkl} = C_{ijkl}^Y x_{fp}^i$$

$$P_{jkl} = C_{ijkl}^P x_{fp}^i$$

• We sum over repeated indices (pp. 11-12)

- In order to test our current matrix, we need certain plots to see how 'aligned' our coordinates are
- We examine six plots:
 - z_{react}: shows the reaction vertex for each foil from the multi-Carbon foil target is, as compared to the nominal (survey) values
 - θ_{tg} vs. ϕ_{tg} for each foil
 - y_{tg} vs. ϕ_{tg} for each foil
 - dp_{kin} for each foil: shows the elastic peak reconstruction when performing a delta (momentum) scan on the Carbon target
 - x_{sieve} vs. y_{sieve}: shows how well the sieve is reconstructed w.r.t. nominal values
 - $p_0(1+\delta)$ for each foil

What's Next?

- Investigate the significance behind a few of the plots I've mentioned (θ_{tg} vs. ϕ_{tg}, y_{tg} vs. $\phi_{tg}, p_0(1+\delta)$) as the phase space plots seem to be superfluous w.r.t. $x_{\rm sieve}$ vs. $y_{\rm sieve}$, and the latter being superfluous w.r.t. the $dp_{\rm kin}$ plot. . .
- Get together needed data (dⁿ₂/transversity?) and generate the plots mentioned