

D. Flay

9/1/11

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Temple University Hadronic & Nuclear Physics Group 1/15

- Method
- Nitrogen Data
- ³He Data

イロト イ団ト イヨト イヨト

2

Method Nitrogen Data ³He Data

Description

- To model our experimental data, we fit it using the QFS program
- Contributing processes in QFS:
 - Quasi-elastic
 - 2 Delta resonance
 - W = 1500, 1700 MeV resonances
 - The 'dip' region
 - OIS
- We (arbitrarily) weight each process by some multiplicative factor(s) so that QFS accurately describes both the 4- and 5-pass data

ヘロト 人間 ト ヘヨト ヘヨト

Method Nitrogen Data ³He Data

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

QFS Modeling of Nitrogen Data (1) The Fit Parameters

• In the following, E_s , E_p , Q^2 and ν have been converted to GeV when used as multiplicative factors

•
$$\sigma_{\rm qe} \rightarrow \frac{E_s}{4} \frac{E_s}{1.178} \sigma_{\rm qe}$$

•
$$\sigma_{\Delta} \to \left(2 + \frac{3}{4}E_p\right)\sigma_{\Delta}$$

•
$$\sigma_{1500} \rightarrow \sigma_{1500}$$

• $\sigma_{1700} \rightarrow \frac{Q^2}{2} \frac{E_s}{\nu} \sigma_{1700}$
• $\sigma_{2N} \rightarrow \frac{1}{5} E_p \left(1 + \frac{E_s}{\nu}\right) \sigma_{2N}$
• $\sigma_{\text{DIS}} \rightarrow \frac{1}{\sin(\theta/2)} \frac{1}{16.5} \frac{E_s}{E_p} \sigma_{\text{DIS}}$

Summary

Nitrogen Data

QFS Modeling of Nitrogen Data (2) $E_{s} = 4730 \text{ MeV}$

Nitrogen, 4-pass

ヘロト ヘワト ヘビト ヘビト

Method Nitrogen Data ³He Data

イロト イポト イヨト イヨト

æ

QFS Modeling of Nitrogen Data (3) $E_s = 4730 \text{ MeV}$

Method Nitrogen Data ³He Data

æ

QFS Modeling of Nitrogen Data (4) E_s = 5890 MeV

Nitrogen Data

QFS Modeling of Nitrogen Data (5) $E_{s} = 5890 \text{ MeV}$

Percent Difference Between Data and QFS

★ E → ★ E →

Method Nitrogen Data ³He Data

イロト イポト イヨト イヨト

3

QFS Modeling of ³He Data (1) The Fit Parameters

• In the following, E_s , E_p , Q^2 and ν have been converted to GeV when used as multiplicative factors

•
$$\sigma_{qe} \rightarrow \frac{E_s}{\nu} \frac{E_s}{4} \sigma_{qe}$$

• $\sigma_{\Delta} \rightarrow \frac{1}{\nu} \left(10^{-3}E + E_p \right) \sigma_{\Delta}$
• $\sigma_{1500} \rightarrow \frac{4}{E_s} \sigma_{1500}$
• $\sigma_{1700} \rightarrow \frac{Q^2}{10} \sigma_{1700}$
• $\sigma_{2N} \rightarrow \frac{9}{10} E_p \left(1 + \frac{E_s}{\nu} \right) \sigma_{2N}$
• $\sigma_{DIS} \rightarrow \frac{3}{5\sin(\theta/2)} \frac{1}{4.73} \sigma_{DIS}$

Method Nitrogen Data ³He Data

QFS Modeling of ³He Data (2) $E_s = 4730 \text{ MeV}$

Temple University Hadronic & Nuclear Physics Group 10/

・ロト ・回ト ・ヨト ・ヨト

³He Data

QFS Modeling of ³He Data (3) $E_{s} = 4730 \text{ MeV}$

Percent Difference Between Data and QFS

イロン イロン イヨン イヨン

Method Nitrogen Data ³He Data

★ E > ★ E >

æ

QFS Modeling of ³He Data (4) $E_s = 5890 \text{ MeV}$

³He Data

QFS Modeling of ³He Data (5) $E_{s} = 5890 \text{ MeV}$

Percent Difference Between Data and QFS

★ E → ★ E →

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- QFS models do a decent job fitting the data:
 - Nitrogen: Better than ~6% for most data points
 - ³He: Better than \sim 5% for most data points
- The model doesn't do as well at high E_p values: 10–30%

イロト イポト イヨト イヨト

What's Next?

- Radiative Corrections:
 - · Get radcor working at our kinematics
- Cross Sections:
 - Double-check nitrogen dilutions (using QFS fit)
 - Finite acceptance correction
 - Loose ends on systematic errors (LT, VDC and Q)

くロト (過) (目) (日)