

SuperBigBite DAQ update

Bryan Moffit Jefferson Lab

SBS DOE Review – November 2015

Outline

- SBS requirements Data Event Flow
- Fastbus Readout

- Event Switching

- FADC HCAL readout
- GEM readout
- Timeline
- Manpower

Jefferson Lab

G^{*p*}_{*E*} DAQ requirements

- Focal Plane Polarimeter
 - Front tracker
 - Back tracker GEM 128 K channels
 - 288 channels HCAL on FADC (10 samples)
- Electron detector
 - 1800 channels ECAL
 - CDet 2152 Channels (TDC)

G_E^p event size (after deconvolution)

Detector	Channels	Single rate Hz	Occupancy 75 ns in %	Channels firing	Event size (bytes)	Data rate 5 KHz MB/s
Front tracker	41,000	3.3e9	18.1	7430	136,000	90
Back tracker	112,640	3.36e9	22.4	12600	230,000	150
HCal	288	_	100	288	7,200	36
ECAL	1800 + 225	_	100	2025	8,100	45
CDET	2152	_	10	216	864	4.3
Total						325.3 MB/s
Includes geometrical matching						

HCAL and ECAL occupancies need to be evaluated : using 100 % for now

G_E^n, G_M^n DAQ requirements

- Bigbite
 - GEM 128 K channels
 - Shower 189 blocks (ADC)
 - Preshower 54 blocks (ADC)
 - Scintillator 180 bars 360 PMTs (ADC/TDC)
 - Cerenkov 550 PMTs (TDC)
- Neutron detector
 - 288 channels HCAL (FADC + high res TDC)
 - CDet 2152 Channels (TDC)

G_E^n , G_M^n event size (after deconvolution)

Arm	Detector	Channels	Single rate Hz	Occup ancy 75 ns in %	Channels firing	Event size (bytes)	Data rate 5 KHz MB/s
BigBite	GEM	112,640	2.6e9	8.7	5248	62,976	300
	Lead glass	243	_	100	243	1003	5
	Scintillators	360	_	100	360	1485	7.4
	Cerenkov	550	_	100	550	2269	11.34
Neutron	HCal	288	_	100	288	7,200	36
	HCAL time	288	_	100	288	1170	5.85
	CDET	2152	_	10	216	864	4.3

Total at 5 KHz 370 MB/s Max

Fastbus update

- Use new CODA 3.0 TI and TS
 - More flexibility in programming
 - Event blocking
 - Absolute timestamp for synchronization check
 - Trigger partitioning capability only use a subset of modules
- Asked for modified firmware to DAQ group in May 2015 (William Gu and Bryan Moffit)
- Firmware being developed and tested

Fastbus update

• Have sufficient TDCs,

have 236 need 124

have 113 need 94 need 21 need 21

have 30 have 21

ADCs, crates, SFI, aux. cards

have 15 (20 being made) need 30

- Making FB faster
 - sparsification works
 - event blocking works
 - event switching being tested
 - merging with pipelining VME to be tried
- Three large Fastbus systems assembled in the test lab.

G_E^p DAQ Configuration / both arms

TI provides timestamp for every event

11/13/2015 9

HallA SBS Trigger block diagram

Jefferson Lab

Single Crate vs. Trigger Switching

Readout trigger rate ~ 5 kHz Buffer Level = 4

8ADC - (reading pedestals on 6 channels in each ADC)

HCAL

- All FADC 16 delivered
- 2 VXS crates delivered
- 2 Intel Concurrent CPU delivered
- Readout tested
- Development of trigger using HPS firmware and Global Trigger Processor (GTP)
- New VTP ordered

HCAL FADC electronics

data:Iteration\$ {Iteration\$<150&&Iteration\$>100}

- Cosmics from calorimeter block
- Will test later with HCAL module

Hadron Arm - HCAL DAQ: proton trigger

• 2 VME switched Serial (VXS) Crates

FADC inputs

- JLAB FADC250, a 16-channel 12-bit FADC sampling at 250 MHz
 - 16 FADC in VXS Crate 1
 - 2 FADC in VXS Crate 2
 - If signal pass threshold
 - Integrates signal and subtracts pedestal
 - Sends time frame info

- VTP (Crate Trigger Processor)
 - Located in VXS crates
 - Collects integrated signal and timing from FADC channels
 - Sends data to the second VTP for clustering

HCAL trigger development

- HPS firmware installed on FADC and GTP
- FADC readout tested with cosmics
- Testing triggering capability
- Need
 - implement decoder for analysis
 - Test using 2 crates and new VTP

GEM MPD readout

- INFN MPD used for several years using custom C++ package
- Package ported to intel CPU
- New C library written for easy integration into CODA
- (Bryan Moffit, Evaristo Cisbani, Danning Di)
- CODA configuration running
- Debugging module initialization •

GEM optical link readout

- Aurora protocol based
 - Implemented by Paolo Musico. To be tested.
- 2 Gbit optical link to SubSystem Processor (SSP) module
 250 MB/s per link
- Readout up to 32 MPD in parallel
 - 8 GB/s bandwidth compared to ~100 MB/s using VME
- SSP library
 - Readout routines Completed.
 - MPD configuration routines In progress
- Link from MPD to SSP module
 - Implemented by Ben Raydo. Works.

Timeline

	4 th quarter 2015	1 st quarter 2016	2 st quarter 2016	Future
•	Finish MPD CODA readout – debug Finish Fastbus Readout – debug	 Implement new HCAL Trigger module 	 GEM installed on BigBite for tritium experiment 	 Tritium experiment Parasitic test: Fastbus and
•	 Small scale setup 200 KHz L1 5 kHz coinc Fastbus, MPD, and HCAL FADC 	 HCAL cosmics GEM cosmics with MPD 	 ECal cosmics DVCS experiment Parasitic test: Fastbus and 	FADC setup
•	Cdet Fastbus	 Test GEM readout with optical link in 	FADC setup	
•	Analysis software : check synchronization	high background at UVA		
•	Test MPD optical readout (SSP)	 Develop GEM analysis software 		
•	HCAL trigger ordered			

Manpower

- Fastbus
 - JLAB : Dasuni Adikaram, Mark Jones, Robert Michaels, Bryan Moffit, William Gu
- MPD
 - INFN : Evaristo Cisbani, Paolo Musico
 - UVA : Danning Di, Kondo Gnanvo, Nilanga Liyanage
 - JLAB : Ben Raydo, Bryan Moffit
 - Stony Brook : Seamus Riordan
- HCAL
 - JLAB : Alexandre Camsonne, Ben Raydo, Bryan Moffit

Conclusion

- Fastbus event switching works well
 - Preliminary results show acceptable dead time in experiment conditions
 - Need to develop software and check synchronization
- HCAL:
 - FADC ready
 - trigger implemented and being tested
- MPD:
 - CODA readout implemented
 - Debugging of the software driver
 - Optical readout in progress
- Small scale test setup in a few weeks

