
#### LHRS Analysis for $d_2^n$ : PID Analysis

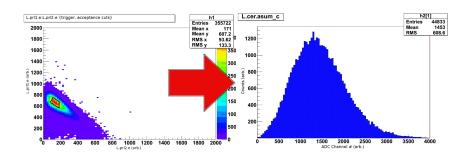
D. Flay



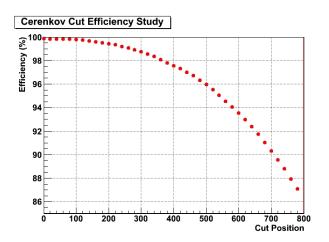
11/17/09

#### **Outline**

- Definition of Cuts
- Electron Detection in the LHRS
  - Gas Čerenkov
  - Pion Rejector
- Pion Rejection in the LHRS
  - Gas Čerenkov
  - Pion Rejector
- $\frac{E}{p} \to \frac{E}{p}(p)$
- Summary

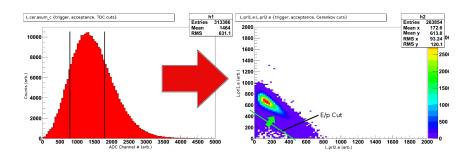

cuts on acceptance: (abs(L.tr.tg\_dp)<0.035)

#### Definition of Cuts


• Cuts used (to be used on all histos displayed in talk): one track:
L.tr.n==1
trigger cuts:
(DL.edtpl==0)&&((DL.evtypebits&(1<<3))==(1<<3))
cuts on target y:
(abs(L.tr.tg\_y)<0.04)
VDC cuts:
(L.vdc.u1.nclust==1)&&(L.vdc.v1.nclust==1)
(L.vdc.u2.nclust==1)&&(L.vdc.v2.nclust==1)</p>

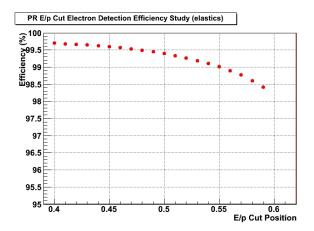
 $(abs(L.tr.tg_th) < 0.05) \&\& (abs(L.tr.tg_ph) < 0.03)$ 

- Use <sup>3</sup>He elastic runs 1229, 1230
- Quick review of the method:




Added a few more cut positions from last time:




# Pion Rejector: Electron Detection (1)

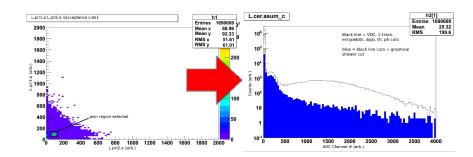
- Use <sup>3</sup>He elastic runs 1229, 1230
- Use E/p cut to count electrons in 2D shower plot
  - Maybe we should add PRL1 cut?
- Quick review of the method:



# Pion Rejector: Electron Detection (2)

• Changing E/p cut position:

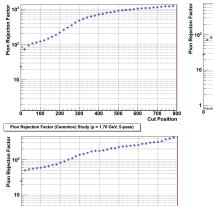



# Gas Čerenkov: Pion Rejection (1)

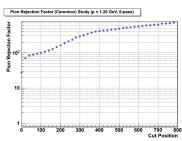
- We select the pion region in the 2D shower plot  $(N_{sh})$ , and see how many show up in the Čerenkov  $(N_{cer})$
- The ratio of  $r = N_{\rm cer}/N_{\rm sh}$  is the percentage of pions that trigger the Čerenkov
  - So, 1/r is our pion rejection factor
- We may also calculate the pion rejection efficiency as:

$$\epsilon_{\pi-\text{rej.}} = 1 - r$$

## Gas Čerenkov: Pion Rejection (2)

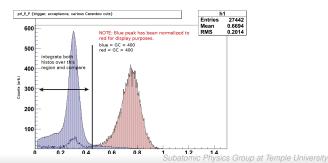

Method: Selection of Pions and Resulting Čerenkov




**Cut Position** 

## Gas Čerenkov: Pion Rejection (3)

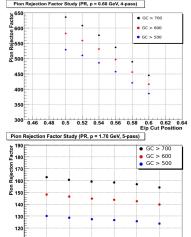
Rejection Factor due to Čerenkov Cut: Results



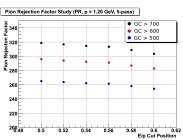

Pion Rejection Factor (Cerenkov) Study (p = 0.6 GeV. 4-pass)



Method: Rejection Factor for E/p + Čerenkov Cut


- We choose a cut position in the Čerenkov, and see how many events pass the cut in the E/p histo
- Compare this to the number of events in E/p with 'inverse' Cerenkov cut (GC < X)
- Count events over a specified region in E/p (0, 0.5) for instance:




E/p Cut Position

## Pion Rejector: Pion Rejection (2)

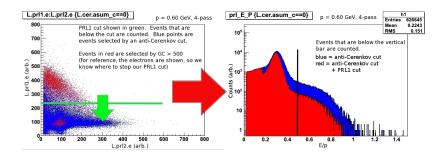
Rejection Factor for E/p + Čerenkov Cut: Results



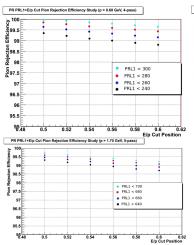
110 10048 0.5 0.52

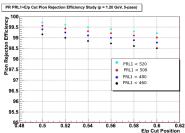


Subatomic Physics Group at Temple University


## Pion Rejector: Pion Rejection (3)

Method: Rejection Factor for E/p + PRL1 Cut


- Similar to process for utilizing the Čerenkov cut with the E/p cut
- Plot E/p subject to an anti-Čerenkov cut (L.cer.asum\_c==0) to tag pions  $(N_i)$
- Compare this with E/p subject to anti-Čerenkov and PRL1 cut (L.prl1.e< X) ( $N_f$ )
- Integrate over region below some E/p value (as before). Then, we have:  $r = N_f/N_i \Rightarrow$  perentage of pions detected by E/p + PRL1 cut
  - Effectively shows the amount of pions rejected when considering L.prl1.e>  $X_i$ , prl\_E\_P>  $X_i$

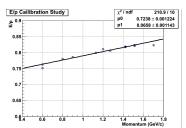

#### Pion Rejector: Pion Rejection (4)

Method: Rejection Factor for E/p + PRL1 Cut



# Pion Rejector: Pion Rejection (4) Rejection Factor for E/p + PRL1 Cut: Results






### Momentum Dependence of E/p vs.p Plot

- There is a significant momentum dependence to the E/p vs. p plot
  - Pion peak positions are all calibrated to 100 channels in PRL1&2 ADC – consistent for all kinematics
  - Talked to Huan maybe an issue with the calculation of  $p_0$ /optics problem?

Useful paper on how the spectrometer momentum is calculated:

http://hallaweb.jlab.org/publications/Technotes/files/2001/01-049.pdf



## Summary

- Elastic (e<sup>-</sup> detection) efficiencies look good (> 99%)
- Gas Čerenkov:
  - Pion rejection factors on the order of 10<sup>2</sup>, 10<sup>3</sup>  $(\sim 99\%$  rejection efficiency)
- Pion Rejector:
  - Most (if not all) pion rejection efficiencies across all kinematics for various E/p+Cer, E/p+PRL1 cut combinations > 99%
  - E/p momentum dependence is strange not terribly sure where to go on this besides the paper I mentioned

#### What's Next?

- PID:
  - Continue calculating pion rejection factors for all other kinematics
  - Figure out what to do about electron efficiencies
- Calibrations:
  - Investigate E/p momentum dependence further
- d<sub>2</sub><sup>n</sup> Status Report:
  - I'm roughly halfway done now need to do sections on LHRS, BB, Compton analysis
    - Send me plot(s) and brief description(s) as soon as you can!
  - I would like to have a first (finished) draft out to you for comments by early December