d2n Analysis Workshop

Asymmetry Update

Matthew Posik

¹Temple University Philadelphia, PA 19122

02/01/2013

Matthew Posik (Temple University)

・ロト ・ 四ト ・ ヨト ・ ヨト

Outline

- 2 Neutron Corrections
- 3 GEANT4 Simulation
 - 4 Q² Dependence

< 6 b

A B b 4 B b

Outline

Contamination

- Main source of contamination is from electrons via pair-production from π^0 and γ decay
- Pair-produced electrons will dilute the electron asymmetry trying to be measured
- In principal, there are two corrections that can be made to remove the pair-produced electrons:
 - A dilution factor can be applied to account for the pair-produced electron dilution
 - Pair produced asymmetry can be subtracted off measured electron asymmetry

The pair-Production dilution factor can be defined as:

$$D = 1 - \frac{\sigma_{e^+}}{\sigma_{e^-}} = 1 - R$$

- Switching the magnetic field on the BigBite magnet, e^+ yields can be measured with the same acceptance as the measured e^- yields during production
- However, BigBite only took e⁺ at one (4.74 GeV) of the two beam energies of E06-014

・ロト ・ 四ト ・ ヨト ・ ヨト …

Determining the BigBite Dilution Factor

To determine the BigBite pair-production dilution factor at E = 5.89 GeV:

- Use LHRS (4.74 and 5.89 GeV e^+/e^- ratios
- Use BigBite 4.74 GeV e^+/e^- ratios
- Use CLAS EG1b e^+/e^- ratios at E = 5.7 GeV and $\theta = 41.1^\circ$

• Fit
$$\left(\frac{e^+}{e^-}\right) \frac{1}{E_0^2}$$
 vs p_T

Use fitted results to extract 5.89 GeV dilution factor for BigBite

Fitting the Data

Figure: Fit to positron-electron ratios measured by CLAS, LHRS and BigBite.

Matthew Posik (Temple University)

• • • • • • • • • • • • •

Positron-Electron Ratio Results

Figure: Positron-electron ratios measured by CLAS, LHRS and BigBite, compared to the fitted results.

Subtracting Pair-Produced Asymmetries

Asymmetry from pair-produced electron can also be subtracted from the measured asymmetry:

$$A^{e-} = \frac{1}{D} \left(A^{rawe-} - RA^{e+} \right)$$

where:

- $R = \frac{e+}{e-}$ ratio
- D = dilution factor for pair production
- A^{rawe-} = measured asymmetry using PID cuts
- A^{e+} = measured positron asymmetry
- A^{e-} = electron asymmetry with pair-produced contamination removed

イロト 不得 トイヨト イヨト

Measuring Positron Asymmetry

- Because of BigBites large acceptance; positive charged particles that bend-down away from the detector can also be measured
- For each production run, a positron asymmetry can also be measured
- But is the bend-down positron asymmetry the same as the bend-up asymmetry?

4 D K 4 B K 4 B K 4

Positron Asymmetry Comparison

Figure: Compares the bend-up and bend-down positron asymmetries for E = 4.74 GeV and target spin of 270 $^{\circ}$.

Matthew Posik (Temple University)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Positron Asymmetries (1) 5.89 GeV

Figure: Compares the raw positron and electron asymmetries, as well as the positron asymmetry weighted by the positron-electron ratio.

Matthew Posik (Temple University)

э

Positron Asymmetries (2)

4.74 GeV

Figure: Compares the raw positron and electron asymmetries, as well as the positron asymmetry weighted by the positron-electron ratio.

Matthew Posik (Temple University)

Applied Pair-Production Corrections

- Pair-production dilution factor is applied in current analysis
- Positron asymmetry corrections are not currently used in analysis

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminary g_1 and g_2

Figure: Preliminary g1 results on ³He.

Figure: Preliminary g_2 results on ³He.

イロト イヨト イヨト イヨト

Preliminary A_1

Figure: Compares the raw positron and electron asymmetries, as well as the positron asymmetry weighted by the positron-electron ratio.

Matthew Posik (Temple University)

- Asymmetries are corrected for dilution from pair-production contamination
- Asymmetries from pair-production are not subtracted from measured asymmetry

Outline

Overview

In order to extract neutron information from ³He:

- Use polarizations of neutron and proton
- Correct for off-shell nucleon spin structure functions
- Use several models to compute g_1^p and $g_2^{p,WW}$
- Models used:
 - DSSV Phys.Rev.Lett.101:072001,2008
 - BB hep-ph/0203155
 - DNS2005 D.de Florian, G.A. Navarro, and R. Sassot, Phys. Rev. D71 (2005) 094018.
 - GS T. Gehrmann and W.J. Stirling, Phys.Rev. D53 (1996) 6100.
- NOTE:
 - $\mathbf{g}_2^p = \mathbf{g}_2^{p,WW}$
 - Neutron corrections valid for DIS region only ($x \leq 0.5 0.6$)

< 日 > < 同 > < 回 > < 回 > < □ > <

³He Correction

Calculate g_1^n and g_2^n from equations 1 and 2

$$g_1^{^{3}He} = (P_n + 0.056) g_1^n + (2P_p - 0.014) g_1^p$$
(1)

$$g_2^{^{3}He} = (P_n + 0.056) g_2^n + (2P_p - 0.014) g_2^{p,WW}$$

(2)

where:

- $g_1^{^{3}He}$ and $g_2^{^{3}He}$ are E06-014 data
- g_1^p and $g_2^{p,WW}$ are calculated from 4 models
- $P_n = 0.86 \pm 0.02$ (neutron polarization)
- $P_p = -0.028 \pm 0.004$ (proton polarization)
- 0.056 and -0.014 come from off-shell nucleon corrections (See Xiaochao Zheng thesis)

Polarized Structure Functions: g_1^p, g_2^p

Figure: Each of the four models results for the proton g_1 and g_2 polarized structure function at beam energy of 4.74 for E06-014 x and Q^2 values. 5.89 GeV data is similar.

Nuclear Correction Size 5.89 GeV

Figure: The difference between the ³He and extracted neutron structure functions are shown as a function of x at a beam energy of 5.89 GeV.

Matthew Posik (Temple University)

イロト イヨト イヨト イヨト

Systematic Uncertainty Contributions

The following uncertainties contribute to the total uncertainty:

- Neutron and proton polarizations
- Dependence from all models
- Dependence on a single model

The first two contributions are considered here

Polarization Uncertainties

The uncertainty from the neutron and proton polarization are given by:

$$(\delta g_1^n)_{P_p}^2 = \left(\frac{2g_1^p}{P_n + 0.056}\delta P_p\right)^2$$
(3)

$$(\delta g_1^n)_{P_n}^2 = \left(\frac{g_1^{^3He} - (P_p - 0.014)g_1^p}{(P_n + 0.056)^2}\delta P_n\right)^2 = \left(\frac{g_1^n}{P_n + 0.056}\delta P_n\right)^2 \tag{4}$$

$$(\delta g_1^n)_{Pol} = \sqrt{(\delta g_1^n)_{P_p}^2 + (\delta g_1^n)_{P_n}^2}$$
(5)

• Similar for g_2^n , with $g_1^n \to g_2^n$, $g_1^p \to \text{ and } g_1^{^3He} \to g_2^{^3He}$

• Each model gave similar uncertainties, so they were averaged together for each x bin.

・ロト ・四ト ・ヨト ・ヨト

Model Difference Uncertainty

Assign an uncertainty based on difference between the 4 models

- Computed the difference of g_1^n and g_2^n from each of the models (i.e. $|g_1^n{}_{DSSV} g_1^n{}_{GS}|$)
- The differences varied in size between the models, so largest difference was taken as the uncertainty for each x-bin
- Total systematic uncertainty is quadrature sum of the model difference and polarization uncertainties
- Total systematic uncertainty approximately order of magnitude smaller than statistical error.

Preliminary g_1^n

Figure: Preliminary 4.74 GeV g_1^n results. The gray band represents the systematic uncertainty currently assigned to the neutron extraction. Note that these results are only valid up to x = 0.5 in the 4.74 GeV data and x = 0.6 in the 5.89 GeV data.

Figure: Preliminary 5.89 GeV g_1^n results. The gray band represents the systematic uncertainty currently assigned to the neutron extraction. Note that these results are only valid up to x = 0.5 in the 4.74 GeV data and x = 0.6 in the 5.89 GeV data.

Preliminary g_2^n

Figure: Preliminary 4.74 GeV g_2^n results. The gray band represents the systematic uncertainty currently assigned to the neutron extraction. Note that these results are only valid up to x = 0.5 in the 4.74 GeV data and x = 0.6 in the 5.89 GeV data.

Figure: Preliminary 5.89 GeV g_2^n results. The gray band represents the systematic uncertainty currently assigned to the neutron extraction. Note that these results are only valid up to x = 0.5 in the 4.74 GeV data and x = 0.6 in the 5.89 GeV data.

Summary

Neutron Corrections

- All 4 models used lead to similar polarized neutron structure functions
- Good agreement with world data
- For a second approach:
 - Working with Wally Melnitchouk to extract neutron information in DIS and resonance regions
 - Apply single model dependence uncertainty
 - Follow similar analysis for Aⁿ₁ and Aⁿ₂

・ロト ・ 四ト ・ ヨト ・ ヨト

Outline

BigBite GEANT4 Simulation

- BigBite GEANT4 simulation was written by Vahe
- Simulations main uses:
 - Particle bend trajectories (bend-up/ bend-down)
 - Contamination contributions

< ロ > < 同 > < 回 > < 回 >

GEANT4 BigBite Makeup

BigBite GEANT4 Simulation includes:

- All detector materials are present (but not fully implemented)
- Uses hits in first MWDC to do simple track reconstruction
- Full shower is implemented
- weights for DIS electrons using F1F209
- weights for $\pi^{0,\pm}$ from Wiser

< ロ > < 同 > < 回 > < 回 > < 回 >

GEANT4 BigBite Material

Lead Glass type F8 (85mm x 85mm x 340mm)

Figure: Materials defined in GEANT4 BigBite simulation.

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

GEANT4 Simulation

5.89 GeV GEANT4 Comparison (1)

Reconstructed Momentum Comparison

Shower Comparison

Energy Over Momentum Comparison

イロン イ理 とく ヨン イヨン

æ

GEANT4 Simulation

5.89 GeV GEANT4 Comparison (2)

Horizontal Target Angle Comparison

Target Z-Vertex Comparison

<ロ> <問> <問> < 同> < 同> < 同> -

Positron to Electron Ratio Comparison GEANT4 Definition

- Looked at $\pi^0 \to 2\gamma \to e^+e^-$
- BigBite in negative polarity (e- bends up)
- GEANT4 bend-up positrons to bend-up electrons:

$$R = \frac{e^{-}[\pi^{0}]}{e^{-}[\pi^{0}] + e^{-}[DIS]}$$

Matthew Posik (Temple University)

GEANT4 Simulation

Positron to Electron Ratio Comparison

4.74 GeV Bend-Up e+/ Bend-Up e-

4.74 GeV Ratios

Figure: e^+/e^- ratios measured in the LHRS and BigBite at beam energy of 4.74 GeV, compared to GEANT4 prediction.

Matthew Posik (Temple University)

GEANT4 BigBite Simulation

- GEANT4 Energy distributions agree well with data
- Improvement can be made in tracking variable distributions
- GEANT4 pair production ratios disagree with data
- Look into hadron and positron distributions

< ロ > < 同 > < 回 > < 回 >

Outline

Q² Dependence

- Polarized structure functions depend on Q²
- Investigate the Q² dependence:
 - On g_1 and g_2 using DSSV
 - Compare our g_1,g_2,A_1 and as a function of Q^2 from other experiments

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \mathbf{Q}^2 Dependence

Q² Dependence from DSSV Fits

Matthew Posik (Temple University)

æ

Q^2 Dependence from Data < x >= 0.33

41 / 53

Interpolating to Constant Q²

- We took data at constant x and varying Q² for two beam energies (4.74 and 5.89 GeV)
- Would like to evolve all data to a constant Q² Could interpolate between two beam energies to a constant Q²

< ロ > < 同 > < 回 > < 回 >

Limitations of Interpolating Data

When interpolating to constant Q²...

- Only two data points can be fitted. So a linear fit is used.
- We can not interpolate over our entire Q² range since some 4 and 5 pass data do not fall between a common Q² value
- Divide data into DIS and resonance regions

Figure: x vs Q^2 for 4 and 5 pass data. Red dashed line shows average Q^2 for the 4-pass data set, the blue dashed line shows average Q^2 for the 5-pass data set and the black dashed line shows the average Q^2 value over the entire data set.

Interpolation in the DIS Region

Figure: x vs Q² for 4 and 5 pass data. Red dashed line shows average Q² in the DIS region for the 4 pass data, the blue dashed line shows average Q² in the DIS region for the 5 pass data and the black dashed line shows the average Q² value in the DIS region over the entire data set.

3 overlapping data points
< Q² >
2.594 GeV² (4-pass)
3.672 GeV² (5-pass)
3.078 GeV² (4+5 pass)
(4+5 pass) Drawn at Q² = 3.0 GeV² here to get more data points for interpolation

A D N A B N A B N

Q² Dependence

$g_1 \text{ DIS} < Q^2 >$ = 3.0 GeV² Interpolation Results

Figure: Interpolation of 4 and 5 pass g1 data to constant Q2 of 3.0 GeV2 in the DIS region.

э

イロト イヨト イヨト イヨト

g₁ and g₂: DIS Region

Figure: g_1 on 3 He as a function of x in the DIS region for various Q^2 treatments.

Figure: g_2 on 3 He as a function of x in the DIS region for various Q^2 treatments.

イロト イポト イヨト イヨト

э

g₁ and g₂: Resonance Region

Figure: g1 on $^{3}\mbox{He}$ as a function of x in the resonance region for various Q^{2} treatments.

Figure: g_2 on 3 He as a function of x in the resonance region for various Q^2 treatments.

イロト イポト イヨト イヨト

э

- Can't use data to evolve to constant Q² value
- DSSV model shows little Q² dependence
- Mild variation at constant $\langle x \rangle = 0.33$ relative to precision when comparing to other experiments
- Averaged Q² value at each x bin show agreement with interpolated values

Outline

- Pair-Production
- Neutron Corrections
- GEANT4 Simulation
- Q² Dependence

Pion Asymmetries

Figure: 5.89 GeV pi-minus asymmetries.

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Pion Asymmetries π^+

Figure: 5.89 GeV pi-plus asymmetries.

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Pion Asymmetries π^+

LHRS-BigBite #* Raw Asymmetry (E = 5.89 GeV, S = 90°)

Figure: 5.89 GeV pi-plus asymmetries.

크

イロト イヨト イヨト イヨト

Nuclear Correction Size 4.74 GeV

Figure: The difference between the ³He and extracted neutron structure functions are shown as a function of x at a beam energy of 4.74 GeV.

Matthew Posik (Temple University)