
Calculating Heating by the Electron
Beam In an Fe Foil

donald.jones@temple.edu

This technical note TargetHeating.tex, TargetHeating.pdf and the accompanying code FeFoil-
Heating.C can be found in the following Github repository:
https://github.com/jonesdc76/MollerPolarimetry/tree/master/TargetPolarization

1 Solving the Heat Equation Specific to the Hall A Møller

Polarimeter

To calculate the heating of the Møller polarimeter iron foil we start with the heat equation. Given
the geometry of the Møller foil where we have a circular10 µm thick foil with a beam heat source
located at the center, we can assume this has no azimuthal or z-dependence and we are left with
only a radial dependence:

ρCp
∂T

∂t
= κ∇2T + ραBflux −

2σε

∆z

(
T 4 − T 4

0

)
. (1)

• T (r, t) is the foil temperature in Kelvin,

• κ is the temperature dependent thermal conductivity of Fe which is approximately 0.8 W/(K
cm) at room temperature,

• ρ = 7.87 g/cm3 is the density of Fe,

• σ = 5.67× 10−12 W/(K4 cm2) is the Stefan-Boltzmann constant,

• ε is the foil emissivity which depends on the polish and structure of the surface ranging from
0 (perfect polish) to 1 (perfect blackbody). Given the polish of the foil, something like 0.1
can be assumed.

• T0 = 294 K, is the ambient temperature of the target ladder holding the foil at its boundary,

• ∆z = 10 µm is the thickness of the foil,

• α is the collision stopping power for electrons in Fe. It is a function of electron energy
and is 2.043 (MeV cm2)/g=3.273×10−13(J cm2)/g for a 10 GeV electron using ESTAR. The
ESTAR data along with a 5-degree polynomial fit used to calculate α as a function of energy
is shown in Fig. 1. Care should be exercised when extrapolating outside the 1-10 GeV range.

• Cp = 0.45 J/(g K) is the specific heat of Fe and,

1



Figure 1: Stopping power for electrons as a function of energy in Fe. Data are from ESTAR and
are fit to a 5-degree polynomial.

• Bflux = d3Ne

dsdt
is the flux density of the beam in e−/(cm2 s).

In principle T and Bflux are functions of position and time. However, we are interested in the
temperature of the steady state which is presumably reached quite rapidly when the beam turns
on. Setting ∂T

∂t
= 0 simplifies Eq. 1. The expected heat load on a 10 µm thick Fe foil in the

electron beam is about 12 mW/µA. If the temperature increase with beam inside the beam flux is
of 30 degrees Celsius or less, over a beam radius of 1 mm, then the radiated energy in this circular
area is 0.13 mW or about 1% of the heat load. In this case, we can safely neglect the radiative
cooling term. If we end up with a temperature increase greater than 30 degrees, then we will have
to revisit this assumption. Under these assumptions, Eq. 1 simplifies to

κ∇2T = −ραBflux (2)

κ

r

∂

∂r

(
r
∂T

∂r

)
= −ραBflux (3)

∂

∂r

(
r
∂T

∂r

)
= −ρα

κ
rBflux. (4)

The Hall A Møller polarimeter, does not typically take rastered beam, and it is thus reasonable to
assume a Gaussian beam flux profile of radius rb. Therefore, the Gaussian profiled electron flux
Bflux from a beam current I in Amperes with a 1 σ radius of rb becomes

Bflux =
I

1.6× 10−19 (2πr2b )
e−r

2/2r2b . (5)

2



Inserting this density profile for the electron beam heat source into Eq. 4 gives

∂

∂r

(
r
∂T

∂r

)
= −γre−r2/2r2b , (6)

where γ ≡ Iρα

1.6×10−19κ(2πr2b)
. Integrating both sides of Eq. 6 w.r.t. r gives

r
∂T

∂r
= r2bγe

−r2/2r2b + C, (7)

∂T

∂r
=
r2bγ

r
e−r

2/2r2b +
C

r
(8)

where C is a constant of integration to be determined from boundary conditions in the steady
state. To determine C, the total heat load from the beam is given by Iαρ∆z/1.6 × 10−19 =
11.8∆z W/(µA cm). The heat flow through the boundary is the product of the conductivity κ,
the cross sectional area of the foil along the foil perimeter 2πRfoil∆z and the temperature slope
∂T/∂r, where length units are in cm. The perimeter of the foil at Rfoil is assumed to be kept
fixed at room temperature. The heat flow at the boundary has to equal the beam heat load in the
steady state, so

(κ2πRfoil∆z)
∂T

∂r
|r=Rfoil

≈ −11.8∆z

(
W

µA cm

)
≈ (κ2πRfoil∆z)C

Rfoil

,

where the first term on the left side of Eq. 8) is not included since it is negligible at the boundary
of the foil Rfoil. The negative sign comes from the direction of heat flow towards higher radius
making the temperature decrease with increasing r.

C ≈ −11.8

2πκ
= −2.50

(
K

µA

)
,

where the value for Fe has been used κ =0.75 W/(K cm). Now to find the temperature difference
between the outside perimeter of the foil at r = Rfoil and some r < Rfoil integrate both sides from
Rfoil to r yielding

∆T =

∫ r

Rfoil

(
r2bγ

r′
e−r

′2/2r2b +
C

r′

)
dr′. (9)

This can easily be integrated numerically as shown in Figures 2 and 3.

3



Figure 2: Fe foil ∆T profile from integrating Eq. 9 with beam spot size, and energy given. For
this example, the foil and beam parameters are approximately used during PREX/CREX.

4



Figure 3: Fe foil temperature profile from integrating Eq. 9 with beam spot size, and energy given.
For this example, the foil and beam parameters are approximately used during PREX/CREX.

5



2 C++/ROOT Code for Numerically Integrating Eq. 9

The following ROOT macro uses Eq. 9 to calculate the foil heating for a circular Fe foil in a
Gaussian profile electron beam.

#include "TF1.h"

#include <iostream>

#include "TGraph.h"

#include "TLegend.h"

#include "TAxis.h"

#include "TPad.h"

#include "TCanvas.h"

#include "TStyle.h"

#include "TPaveText.h"

#include "TString.h"

///////////////////

//Donald C. Jones//

//Nov. 2021 //

///////////////////

//////////////////////////////////////////////////////////////////////

//FeFoilHeating() calculates and graphs the temperature difference

//in a thin circular Fe foil between its edge held at a fixed

//temperature T0 and inside a circular Gaussian-distributed

//electron beam.

//

//

//Arguments:

// beam_cur: beam current in Amperes

// beam_r: 1 sigma beam spot size radius in cm

// beam_E: beam energy in GeV

// T0: ambient (Hall) temperature in Kelvin taken as foil

// boundary temperature

//

//Returns the foil temperature difference in degrees K between T0

//at the foil edge and the temperature at the 1-sigma beam

//radius r_beam.

//

//NOTE: it is helpful to recall that for a 2D circular Gaussian

//distribution the volume between r=0 and the n-sigma points

//are as follows:

//1sigma = 39.35%, 2sigma = 86.47%, 3sigma = 98.89%, 4sigma = 99.97%

//Therefore, the temperature should be averaged over at least 3 sigma.

/////////////////////////////////////////////////////////////////////////

double FeFoilHeating(double beam_cur = 1e-6, double beam_r=5e-3,

double beam_E = 11, double T0 = 294){

gStyle->SetStatY(0.7);

gStyle->SetStatH(0.2);

6



gStyle->SetOptFit(1111);

gStyle->SetTitleW(0.95);

const double rho = 7.87;//density of Fe

const double sigma = 5.670e-12;//Stefan Boltzman constant W/(cm^2 K^4)

const double Cp = 0.45;//Fe specific heat capacity in J/(g K)

const double echarge = 1.602e-19;//Coulombs per electron

const double R_foil = 0.5*2.54/2.0;//radius of Fe foil in cm

const double PI = 3.1415927;//pi obviously

//Use ESTAR data to estimate energy loss as a function of electron energy

//----------------------------------------------------------------------------------

TCanvas *c = new TCanvas("c","c",0,0,800,600);

double beam_en[10]={1,2,3,4,5,6,7,8,9,10};//beam energy in GeV

double stop_en[10]={1.878,1.928,1.957,1.977,1.993, //collision stopping power

2.006,2.017,2.027,2.035,2.043};//in (MeV cm^2/g) using ESTAR

TGraph *grStop = new TGraph(10,beam_en,stop_en);

grStop->SetTitle("Electron Stopping Power for Fe vs Beam Energy (ESTAR Data)");

grStop->SetMarkerStyle(8);

grStop->Draw("ap");

grStop->GetXaxis()->SetTitle("Electron Energy");

grStop->GetYaxis()->SetTitle("Stopping Power (MeV cm^{2}/g)");

gPad->Update();

TF1 *fStop = new TF1("fStop","pol5",0,1);//use fit to give continuous function

grStop->Fit(fStop);

double alpha = echarge*fStop->Eval(beam_E)*1e6;//Collision stopping power in

(Jcm^2/g)

cout<<"Stopping power "<<alpha<<" (J cm^2/g)"<<endl;

c->SaveAs("StoppingPower.png");

//Calculate the energy dependent thermal conductivity of Fe using data either from

//https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Fe

//or

//https://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html

//----------------------------------------------------------------------------------

bool data_efunda = 1;

TCanvas *ct = new TCanvas("ct","ct",0,0,800,600);

double temp[4] = {250,300,350,400};

double cond[4] = {0.865,0.802,0.744,0.695};//www.efunda.com

TGraph *grC = new TGraph(4,temp,cond);

grC->SetTitle("Fe Thermal Conductivity vs. Temperature");

grC->SetMarkerStyle(8);

grC->Draw("ap");

grC->GetXaxis()->SetTitle("Temperature (k)");

grC->GetYaxis()->SetTitle("Thermal Conductivity (W/cm K)");

7



TF1 *fCond = new TF1("fCond","pol2",0,1);

grC->Fit(fCond);

gPad->Update();

if(!data_efunda)//www.engineeringtoolbox.com

fCond = new TF1("fCond","0.835-0.001102*(x-273)",0,1);

double guessTemp = T0+15*beam_cur/1e-6;//starting guess for final foil temperature

double kappa = fCond->Eval(guessTemp);

cout<<"Conductivity at "<<guessTemp<<" K is "<<kappa<<endl;

ct->SaveAs("FeThermalCond.png");

//Integral of f(r) gives delta T. Create the integrand f(r)

//----------------------------------------------------------------------------------

double gam = beam_cur/echarge*rho*alpha/kappa/2./PI/pow(beam_r,2);

double C = -beam_cur/echarge*alpha*rho/2.0/PI/kappa;

TF1 *f = new TF1("f",Form("%e/x*exp(-x*x/%e)+%e/x",

beam_r*beam_r*gam,2*beam_r*beam_r,C),0,R_foil);

//Improve thermal conductivity estimate using the calculated temperature.

//Temperature at 1.3*beam_r is a good estimate of the average temperature

//weighted by the beam spot charge distribution.

//-----------------------------------------------------------------------------------

guessTemp = f->Integral(R_foil,1.3*beam_r)+T0;

kappa = fCond->Eval(guessTemp);

gam = beam_cur/echarge*rho*alpha/kappa/2./PI/pow(beam_r,2);

C = -beam_cur/echarge*alpha*rho/2.0/PI/kappa;

cout<<"Conductivity re-calculated at "<<guessTemp<<" K is "<<kappa<<endl;

f = new

TF1("f",Form("%e/x*exp(-x*x/%e)+%e/x",beam_r*beam_r*gam,2*beam_r*beam_r,C),0,R_foil);

//Graph resulting temperature profile by integrating f(r)dr. Make points red inside

//2 sigma beam spot size radius.

//-----------------------------------------------------------------------------------

const int N=500;

double r[N], T[N], dT[N],ri[N],Ti[N], dTi[N];

int n=0, ni=0;

double rp = R_foil;

for(int i=0;i<N/2;++i){

r[i]=rp;

dT[i] = f->Integral(R_foil,rp);

T[i] = dT[i]+T0;

if(rp<2*beam_r){

ri[ni]=rp;

Ti[ni]=T[i];

dTi[ni]=dT[i];

8



++ni;

}

rp*=0.95;

++n;

if(rp<0.00001)break;

}

for(int i=0;i<n;++i){

r[i+n]=-r[n-i-1];

dT[i+n] = dT[n-i-1];

T[i+n] = T[n-i-1];

}

for(int i=0;i<ni;++i){

ri[i+ni]=-ri[ni-i-1];

dTi[i+ni] = dTi[ni-i-1];

Ti[i+ni] = Ti[ni-i-1];

}

TCanvas *c1 = new TCanvas("c1","c1",0,0,800,600);

TGraph *grdT = new TGraph(2*n,r,dT);

grdT->SetMarkerStyle(8);

grdT->SetLineWidth(6);

grdT->SetMarkerSize(0.3);

grdT->Draw("acp");

grdT->SetTitle(Form("Foil #DeltaT Profile vs Radial Distance from Foil Center"));

grdT->GetXaxis()->SetTitle("Radial Distance from Foil Center (cm)");

grdT->GetYaxis()->SetTitle("#DeltaT (K)");

TGraph *gridT = new TGraph(2*ni,ri,dTi);

gridT->SetMarkerStyle(8);

gridT->SetMarkerColor(kRed);

gridT->SetLineColor(kRed);

gridT->SetLineWidth(6);

gridT->SetMarkerSize(0.4);

gridT->Draw("samecp");

gPad->SetGrid();

TPaveText *pt = new TPaveText(0.6,0.4,0.89,0.6,"ndc");

pt->SetFillColor(0);

pt->SetShadowColor(0);

pt->SetBorderSize(0);

pt->AddText("Beam Parameters");

pt->AddText(Form("Beam Energy: %0.1f GeV",beam_E));

pt->AddText(Form("Beam Current: %0.1f #muA", beam_cur*1e6));

pt->AddText(Form("Beam Spot size 1#sigma Radius: %0.1f #mum)",beam_r*1e4));

pt->AddText(Form("Foil Radius: %0.2f (cm)",R_foil));

pt->Draw();

TLegend *lg = new TLegend(0.62,0.76,0.89,0.89);

lg->AddEntry(grdT,"Outside 2#sigma beam spot","lp");

lg->AddEntry(gridT,"Inside 2#sigma beam spot","lp");

lg->Draw();

c1->SaveAs("FoilHeatingdT.png");

TCanvas *c2 = new TCanvas("c2","c2",0,0,800,600);

TGraph *gr = new TGraph(2*n,r,T);

9



gr->SetMarkerStyle(8);

gr->SetLineWidth(6);

gr->SetMarkerSize(0.3);

gr->Draw("acp");

gr->SetTitle(Form("Foil Temperature Profile vs Radial Distance from Foil Center"));

gr->GetYaxis()->SetTitle("Foil Temperature (K)");

gr->GetXaxis()->SetTitle("Radial Distance from Foil Center (cm)");

TGraph *gri = new TGraph(2*ni,ri,Ti);

gri->SetMarkerStyle(8);

gri->SetMarkerColor(kRed);

gri->SetLineColor(kRed);

gri->SetLineWidth(6);

gri->SetMarkerSize(0.4);

gri->Draw("samecp");

gPad->SetGrid();

lg->Draw();

pt->Draw();

c2->SaveAs("FoilHeatingT.png");

//Integrate f(r) weighted by the beam charge distribution to find average delta T

//-----------------------------------------------------------------------------------

gStyle->SetOptFit(0);

TF1 *fGaus = new TF1("fGaus","[0]*exp(-x*x/(2*[1]*[1]))+[2]",-2*beam_r,2*beam_r);

fGaus->SetParameters(guessTemp/2.,beam_r,T0);

gr->Fit(fGaus,"r");

TString func = Form("(%e*exp(-x*x/(2*%e))+%e)*x*exp(-x*x/2./%e)/%e",

fGaus->GetParameter(0),pow(fGaus->GetParameter(1),2),

fGaus->GetParameter(2),beam_r*beam_r,beam_r*beam_r);

TF1 *fAvgT = new TF1("fAvgT",func.Data(),0,1);

fAvgT->SetNpx(1000);

//fAvgT->Draw();

cout<<"dT at 1.3 sigma is "<<f->Integral(R_foil,beam_r*1.3)<<endl;

//Return average temperature, weighted by the beam spot charge distribution.

//-----------------------------------------------------------------------------------

return fAvgT->Integral(0,10*beam_r);

}

10


	Solving the Heat Equation Specific to the Hall A Møller Polarimeter
	C++/ROOT Code for Numerically Integrating Eq. 9

