LHRS Analysis for d_2^n Radiative Corrections Update: Where Are We?

1/19/12

D. Flay

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Cod
C++ Code

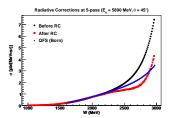
Outline

Radiative Corrections: Current State

RADCOR: Fortran Code

C++ Code

Summary

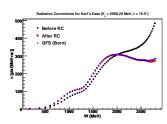

Temple University Hadronic & Nuclear Physics Group

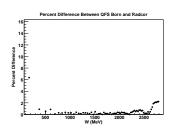
Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

RADCOR: Fortran Code (1)

Main Problem

▶ Problem: Unfolded results from RADCOR do not agree with the Born cross section found in QFS at our kinematics (on the order of $\sim 20\%$):

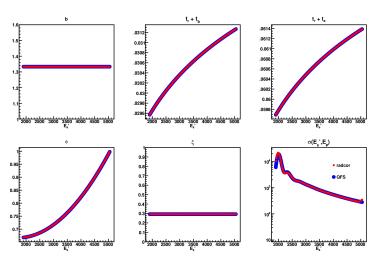

Temple University Hadronic & Nuclear Physics Group


Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

RADCOR: Fortran Code (2)

Main Problem

But it works for E94-010 kinematics:

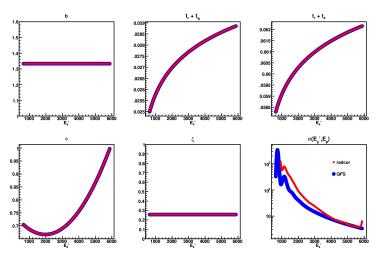

Temple University Hadronic & Nuclear Physics Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

RADCOR: Fortran Code (3)

E94-010: E_s Integrand Decomposition

• $E_s = 5058 \text{ MeV}, E_p = 1858 \text{ MeV}$:


Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

RADCOR: Fortran Code (4)

E06-014: E_s Integrand Decomposition

• $E_s = 5890 \text{ MeV}, E_p = 600 \text{ MeV}$:

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

RADCOR: Fortran Code (5)

Discussion

- Differences between the two (input) data sets:
 - **1.** Scattering angle: E94-010 = 15.5° ; E06-014 = 45°
 - QFS free parameters were different for E94-010 and E06-014 (see table)
 - The QFS model for E06-014 was optimized to fit E94-010, E01-012 and E06-014 data
- ightharpoonup Even with optimized parameters for Karl's kinematics, the agreement between QFS Born and the unfolded σ from RADCOR differ by $\sim <4\%$

Free Parameters for the QFS Model			
Exp	p_F (MeV)	ϵ (MeV)	ϵ_{Δ} (MeV)
E94-010	220	10	-10
E06-014	130	10	15

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

C++ Code (1)

Details

 Currently developing C++-based radiative correction code (almost complete)

Classes:

- **1.** Spectrum: Holds $\sigma(E_p)$ for a given E_s and θ . Data members include σ_{Mott} , ν , y and W
- **2.** RadCor: Calculates all pertinent quantities (integrals, etc.) for a given E_s and E_p
- Interpolation: Interpolates cross section data for RadCor
- **4.** Target: Stores target nucleus info (Z,A), (full) thicknesses (t_b,t_a)
- Parameters: Stores miscellaneous parameters from the input file
- 6. FileManager: Handles input and output of data
- Utilities: Miscellaneous functions that are useful (copying vectors, spectra, etc.)

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

To Do List

- Full implemenation of code is complete
 - Memory leaks have been completely flushed out (thanks to Valgrind)
 - E_s integrand decomposition shows consistency with both QFS and radcor for the variables $b,\,t_r,\,t_a,\,t_b,\,\phi$ and ξ
- Remaining things to do and issues to fix:
 - \blacktriangleright Check efficiency of code (it takes \sim 30 mins to run one iteration on 5 spectra)
 - Implement a convergence check (was not actually present in RADCOR)
 - Double check interpolation method cross sections differ from RADCOR
 - Additional interpolation methods
 - Check code against Mo & Tsai, Stein, E94-010 and E01-012 data

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code
C++ Code

- ► The problem in RADCOR seems to lie in the cross section interpolation function
- Almost finished development of C++-based code, some things remain to implement

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code

What's Next?

- Radiative Corrections
 - Look to improve the interpolation function in RADCOR
 - ► Continue development of C++ code

Temple
University
Hadronic &
Nuclear Physics
Group

Radiative
Corrections:
Current State
RADCOR: Fortran Code