LHRS Analysis for d_2^n Radiative Corrections Update: Where Are We?

D. Flay

1/19/12

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

Summary

1/11

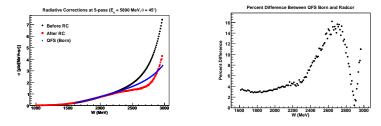
Outline

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

Summary

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

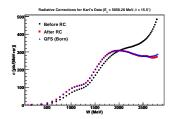

Summary

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

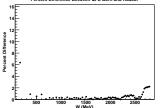
RADCOR: Fortran Code (1)

Main Problem

Problem: Unfolded results from RADCOR do not agree with the Born cross section found in QFS at our kinematics (on the order of ~ 20%):


Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code


RADCOR: Fortran Code (2)

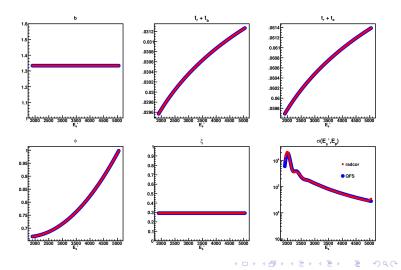
Main Problem

But it works for E94-010 kinematics:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

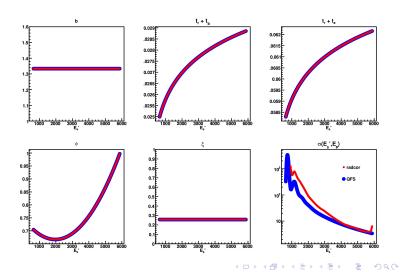

Summary

4/11

RADCOR: Fortran Code (3)

E94-010: E_s Integrand Decomposition

▶
$$E_s = 5058$$
 MeV, $E_p = 1858$ MeV:


University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

RADCOR: Fortran Code (4)

E06-014: E_s Integrand Decomposition

▶
$$E_s = 5890$$
 MeV, $E_p = 600$ MeV:

6/11 Temple

University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

RADCOR: Fortran Code (5)

Discussion

- Differences between the two (input) data sets:
 - **1.** Scattering angle: E94-010 = 15.5° ; E06-014 = 45°
 - 2. QFS free parameters were different for E94-010 and E06-014 (see table)
 - 3. The QFS model for E06-014 was optimized to fit E94-010, E01-012 and E06-014 data
- Even with optimized parameters for Karl's kinematics, the agreement between QFS Born and the unfolded σ from RADCOR differ by $< \sim 4\%$

Free Parameters for the QFS Model			
Exp	p_F (MeV)	ϵ (MeV)	ϵ_{Δ} (MeV)
E94-010	220	10	-10
E06-014	130	10	15

7/11

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

C++ Code (1)

Details

- Currently developing C++-based radiative correction code (almost complete)
- Classes:
 - **1.** Spectrum: Holds $\sigma(E_p)$ for a given E_s and θ . Data members include σ_{Mott} , ν , y and W
 - **2.** RadCor: Calculates all pertinent quantities (integrals, etc.) for a given E_s and E_p
 - Interpolation: Interpolates cross section data for RadCor
 - **4.** Target: Stores target nucleus info (Z,A), (full) thicknesses (t_b,t_a)
 - **5.** Parameters: Stores miscellaneous parameters from the input file
 - 6. FileManager: Handles input and output of data
 - 7. Utilities: Miscellaneous functions that are useful (copying vectors, spectra, etc.)

8/11

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

C++ Code (2)

To Do List

- Full implemenation of code is complete
 - Memory leaks have been completely flushed out (thanks to Valgrind)
 - E_s integrand decomposition shows consistency with both QFS and radcor for the variables b, t_r, t_a, t_b, ϕ and ξ
- Remaining things to do and issues to fix:
 - Check efficiency of code (it takes ~ 30 mins to run one iteration on 5 spectra)
 - Implement a convergence check (was not actually present in RADCOR)
 - Double check interpolation method cross sections differ from RADCOR
 - Additional interpolation methods
 - Check code against Mo & Tsai, Stein, E94-010 and E01-012 data

9/11

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

Summary

- The problem in RADCOR seems to lie in the cross section interpolation function
- Almost finished development of C++-based code, some things remain to implement

10/11

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

What's Next?

- Radiative Corrections
 - Look to improve the interpolation function in RADCOR
 - Continue development of C++ code

11/11

Temple University Hadronic & Nuclear Physics Group

Radiative Corrections: Current State RADCOR: Fortran Code C++ Code

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@