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Outline

Goals:
- Establish common view of goals, challenges, and expected capabilities

- ldentify possible pitfalls
- Flag areas requiring near-term activity

Outline:

- Plan for high precision polarimetry
- Moller, general issues

- Compton, general issues.

+ Comparison between polarimeters



Credibility for 0.4% accuracy

* Two independent measurements which can be cross-checked

* Continuous monitoring during production (protects against drifts,
precession...)

- Statistical power to facilitate cross-normalization (get to systematics
limit in about 1 hour)

Schedule for high precision:

- PREX2/CREX Fall 2018: 1% at 1 GeV and 2 GeV
« MOLLER 2020: 0.5% at 11 GeV (for phases 2 & 3)
« SOLID 2024(?): 0.4% at 11 GeV and 6.6 GeV

Moaller Compton
Upgraded “high field” polarimeter 11 GeV baseline may meet goals
JLab, Temple, SBU, Kharkov/UVa - significant independence in photon vs
Atomic hydrogen gas target polarimeter . elecf[t.ron measurements with high
. expected accuracy to better than 0.4% C(r)encligili)?]us measurement with hig
* non-invasive, continuous measurement P _
- backup plan, if needed Mainz, W&M
Mott

Upgraded for precise asymmetry measurement
Techniques for limiting Sherman function uncertainty




Moller Polarimetry Goals

Top View

* “high field” iron target of:
- well-known magnetization at saturation
- ultimately rests on empirical spin polarization
from force/torque measurements
* QQQAQD spectrometer
- Open acceptance minimizes Levchuk correction
 Detect coincidence of identical particles
-low background measurement

Can be (in principle) well understood: |
spectrometer acceptance, magnetic saturation, o |
target heating, radiative corrections, dead time,
backgrounds...

Same techniques in Hall C ~ 0.7% polarimetry

Rebuilt for 12 GeV and high field.
e Commissioned at high energy

e Needs low energy commissioning After DVCS
e Target apparatus being improved e move target system to test lab for development

e Reinstall, commission for PREX in 2018



Potential Moller Polarimetry Challenges

Accuracy of Asymmetry Measurement

e Rate dependence / deadtime

e Background - dilution?

e Background asymmetry - iron pipe and
new beam optics quadrupole

Analyzing power normalization

 Optics / acceptance (distorted by target field?)

e Levchuk correction

e Quality of saturation

e Target heating

e Electron spin polarization in magnetized material

Extrapolation to running conditions
e Polarization vs. Cathode current
e Polarization vs. slit width, etc...

Other issues?



Hall A Compton Polarimeter

Microstrip tracking
electron detector
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Operation at lower energy (1-2 GeV) is a very different set of challenges
<1% at 1 GeV is important proving ground for 0.4% at 11 GeV

Past Achievement

- HAPPEX-3 (2009): 0.8% at 3 GeV
« PREX-2 (2010): 1.0% at 1.06 GeV
« Qweak (2012): 0.8% at 1 GeV
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Potential Compton Polarimetry Challenges

Photon

Accuracy of Asymmetry Measurement
e Detector baseline shifts (integration)

e Detector rate linearity (integration, counting)

e Synchrotron radiation
e background magnitude / stability
e electronics noise (integrating)

Analyzing power normalization

e Energy calibration (counting)

eResponse function linearity (integrating)
e Laser polarization

Electron

Detector

e no Hall A detector since 2007

e Efficiency? Geometry? Radiation
resistance? Light sensitivity? Thickness?

e DAQ

e Most useful at high-E. At 2 GeV (CREX in
2018) probably would be useful

Analysis

e Qweak-style fit - well defined set of
possible errors, cross-checks

e Cross-checks (“zero-slope”)



Spin Dance / Cross-Comparison

Qweak Moller-Compton-Moller (2012) JLab Spin Dance (2000)
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SLD Compton Polarimeter

“The scanning Compton polarimeter
for the SLD experiment”

532 nm
- - Frequency Doubled
== Eiircular Palarizer
Focusing
- and
e Pulsed laser a il
Mirrar Box
e ~1000 scattered electrons per " (preserves circular
pulse Laser Beam " - paiprizRon)
Analyzer and Dump / B Complon
e 2/3 operating time was “Compton IP"—" Back Scatterede™
. . “ ; ” Analyzing s -
calibration, not “production Heid Mageist . Dateclor

e Integrating electron and photon Polatized Gamma *
detectors Counter

~ Quartz Fibar
Calonmeater

® Published results OP/P~0.5%
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Collider Compton Polarimetery

Electron detector was corrected
for energy calibration, response
function

Detector element at the
Compton edge was least
sensitive to corrections,
and so most precise

sin?Bw rests on a single
electron detector channel !
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SLD vs. Hall A

- SLD near interaction region: no photon calorimeter for production

- SLD is only pulsed mode

- Hall A has single-photon / single-electron mode (CW)
- Efficiency/resolution studies
- Tagged photon beam
- Measured spectrum vs. simulation

- SLD had crude electron detector resolution
- Hall A: greater resolution resolution, more precise calibration

- SLD didn’t cover all of Compton-scattered spectrum
- Hall A: calibrate features of spectrum

- SLD required chromaticity correction
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_ Eectron Detector

> Compton events

[Crude approximation - actually use
radius of curvature in dipole region...]

3rd dipole
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Calibrating the Analyzing Power

| Cross-section, 11 GeV and 1064 nm | | Analyzing Power, 11 GeV and 1064 nm
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Major challenge for electron counting is knowing kinematics seen by
each strip, so the expected analyzing power for each strip. Calibrate the
Compton edge, asymmetry zero-crossing, slope in region between, at
minimum asymmetry .

Major challenge for photon counting is averaging over the response
function to find analyzing power for bins of detector response. Cleaner
response function at higher energy helps!

S
Major challenge for photon integration is linearity, and perhaps noise.g&

Electron counting and photon integration have been successful at 1 GeV for <1% preciS|on!15




Electron Detector in Hall A
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Current Electron pustrip Detectors
Noise vs. signal, especially in Hall, makes high efficiency hard

Existing Hall A Si strip system

[planc_] e Hall C Diamond strips
= Mean 49.75
1200 R =1 Rough guess: 65% efficient?
Entries 1.863437¢+07
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Thicker Si strips with existing Hall C style diamond strips?
electronics? (is rescattering from
Si substrate an important Improved electronics? (compton
systematic correction?) edge from hit pattern is an

important calibration point: high
New electronics for Si ustrips? efficiency needed!)
Cons: radiation hardness and Improved radiation hardness &
synch light sensitivity synch light sensitivity 17



Electron Detector, Hall C

- chi Sq / ndf : 1.040631
0.04 i i effective strip width : 1.021 + 0.005
QED-Asymmetry fit to exp-Asymmetry Compton Edge :62.00 = 0.00
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~5mm from beam

 Fit to the asymmetry spectrum shape to theoretical asymmetry distribution.
« Shape (including zero crossing) provides calibration, to absolute asymmetry.
» Check with Compton edge in the rate spectrum, and known BdL.
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Electron analysis at 11 GeV

Multiple analysis techniques to calibrate analyzing power

« Asymmetry Fit: using Compton edge and Oxing to calibrate

« Edge “single strip”- a single microstrip, 250 micron pitch,
right at the compton edge. (~1 hour to 0.4%)

* Minimum single strip- a single microstrip, at the asymmetry
minimum (~1 day to 0.4%)

5 s0f
Other possible complications 2 5L
S 20

* Compton Edge location (efficiency, < E 11 GeV

noise) g 1064 nm
- O-ray / rescattered Compton e 0
- Deadtime (noise, background) 5
o
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e-y coincidence: response function calibration

* Electron-photon coincidence
e l[ow-rate trigger (prescaled)

e Photon discriminator threshold and minimum e- detector approach
leaves some portion of the response function unmeasured....

Photon detector response in coincidence

with single e-det strip
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HAPPEX-3 “bump”

Rescattering in e-det
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Summary

Relative Error (%) electron photon
Position Asymmetries - -
Ebeam and Ajaser 0.03 0.03
Radiative Corrections 0.05 0.05
Laser Polarization 0.2 0.2
Background/Deadtime/Pileup 0.2 0.2
e
Total 0.38 0.45

correlated

uncorrelated

« At high energy there are more options for achieving high

precision with edet

« At low energies electron detector calibration will be very

difficult. Helpful cross-check?
 Thin detector better than thick

23



Backup

24



Beam Aperture

Collimators protect optics at small

crossing angles... but at the cost of
larger backgrounds?

Existing 1cm aperture (1.4° crossing)
10kW IR gives signal ~23 kHz/uA
(few minutes to 0.5% precision)

Typical “good” brem rate: ~ 100 Hz/uA
Residual gas should be about 10x less

How much larger will the halo and tail be,
due to synchrotron blowup?

Full 0.5" aperture, signal ~9 kHz/pA. Still plenty of precision!

Uptime and precision may benefit from larger aperture, to be
considered after tests with 11 GeV beam.
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Hall A Compton, 11 GeV Update

11 GeV functionality required changing chicane deflection: 30 cm = 21.55 cm

As of January 2014, most of the infrastructure work had been completed
-> Dipole height adjusted

- New vacuum chambers fabricated and installed

-> Laser table height adjusted (new legs)

- New electron detector chamber fabricated

Recently completed
- Modifications for photon detector stand and collimator holder

- Photon tube

ELECTRON DETECTOR

|

PHOTON DETECTOR

|HEA

from D. Gaskell, PREX Collab Mtg, Dec 2014
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Dipole Shims for Synch Light Background

At higher energies, synchrotron
backgrounds in photon detector
get uncomfortably large

-> This can be mitigated by
adding relatively small shims
at ends of dipole to “soften”
the bend

- Shims have been installed
as part of the 12 GeV
improvements

from D. Gaskell, PREX Collab Mtg, Dec 2014

A more optimal design for these shims has already been fabricated - to
be installed in problems are evident in 11 GeV Commissioning (DVCS)
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Laser System being revived
= Doubling to green, with good efficiency (20%, could be

improved?)

Laser

= Slow control functionality restored
= | aser lock established, but low gain (500x expected, 100x

achieved)

= state of the art was 10kW - provided overhead for larger
crossing angle (if needed)
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Photon Detector

New Photon Detector Mounting

for 11 GeV Configuration
2 GSO Detector: testing/development underway

at CMU. High-resolution for low-energy
(PREX)

Tools for linearity/gain studies critical for both
1 GeV and 11 GeV operations

11 GeV needs detector optimized to higher
energy (3 GeV vs. 30 MeV photon energy)

Ny

Lead-tungstate test
detector (2x2 array of
3x3x10cm crystals) to be
used during DVCS.
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Optical Layout
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Synchrotron Radiation

Electron Beam Pb Absorber Electron detector
radiation will carry :
D1 D4
an order of E
magnitude more Magnetic Chicane | RiNEg ' etector
power than present L ¥
6 GeV running

- . T ———— SR intensity and hardness
’ e e can be reduced with D2, D3
fringe field extensions
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Qweak Electron Detector Analysis

Parameter Uncertainty det.P/P%
Laser Polarization 0.18 0.18
Plane to Plane secondaries 0.00
magnetic field 0.0011T 0.13
beam energy | MeV 0.08
detector z position I mm 0.03
inter plane trigger 1-3 plane 0.19
trigger clustering 1-8 strips 0.01
detector tilt(w.r.t x) | degree 0.03
detector tilt(w.r.t y) | degree 0.02
detector tilt(w.r.t z) | degree 0.04
detector efficiency 0.0-1.0 0.1
detector noise up to 0.2% of rate 0.1
fringe field 100% 0.05
radiative corrections 20% 0.05
DAQ inefficiency correction | 100% (preliminary) 0.7
DAQ inefficiency pt.-to-pt. (preliminary) 0.35
Total 0.85
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Photon analysis

Energy Weighted Integration

Optimal strategy for low energies.
Uniformity of detector response

function is important

Asymmetry Fit or Averaging,

with Threshold.

calibration of response function

with tagged photons

| Analyzing Power, 11 GeV and 1064 nm |
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Detector Response
Function -

- Resolution is less important for integrating technique.

- Helps for e-det coincidence cross-calibration.
- Linearity is crucial in any case

- large dynamic range in both average and peak current

- PMT and readout require care
- Effect of shielding on asymmetry spectrum
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