Gen ERR charge item 6: Radiation and Shielding

Eric Fuchey University of Connecticut

October 22nd, 2020

Are the radiation levels expected to be generated in the hall acceptable? Is any local shielding required to minimize the effects of radiation in the equipment?

To address this, we need:

- * Evaluation of radiation budget for G_{ϵ}^{n}
- * Evaluation of beam induced background in the individual detectors for $G_{\scriptscriptstyle F}^{\ \ n}$

Radiation budget for GEn

Preliminary estimation of radiation budget for GEn by P. Degtiarenko

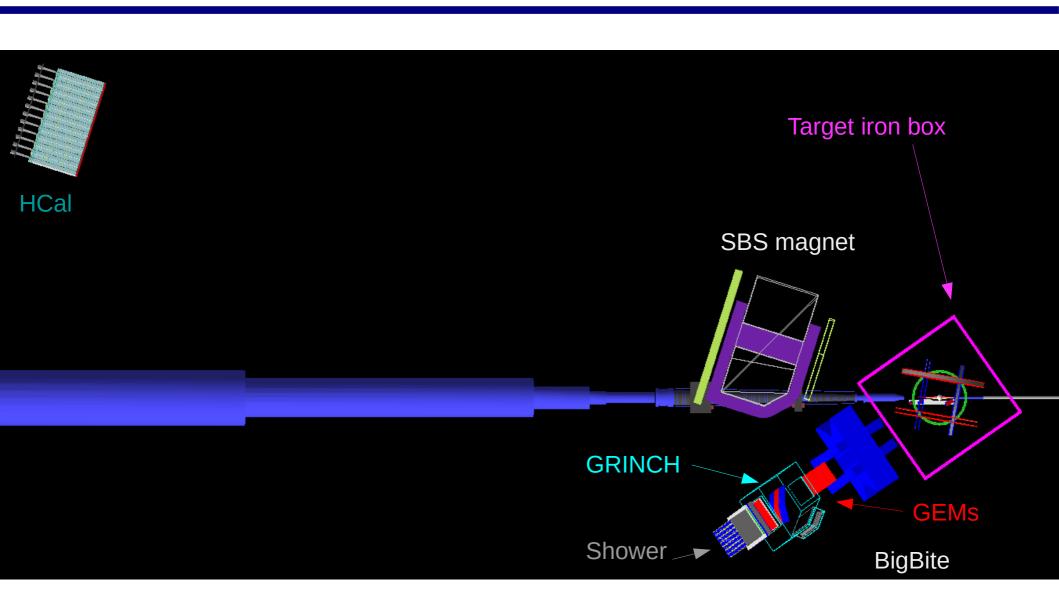
Hall:	Α					RAI	OIAT	ION	BU	DGET FORM	page: 1 of 1
Exp. # GEn E12-09-016		rev:	run dates: TBD						name of liaison: Todd Averett		
s	setup number		1	2	3	4	5	6	7		
beam	energy	GeV	4.4	4.4	4.4	4.4	4.4	6.6	8.8		totals:
	current	uA(CW)	60.0	60.0	60.0	5.0	60.0	60.0	60.0		
exp't	element	•	He-3	N	Н	C	He-3	He-3	He-3		
target	thickness	mg/cm2	90	70	60	280	90	90	90		
add'l	element		Be	Be	Be	Be	Be	Be	Be		
target 1	thickness	mg/cm2	46.9	46.9	46.9	46.9	46.9	46.9	46.9		
add'l	element		N	N	N	N	N	N	N		
target 2	thickness	mg/cm2	24.65	24.65	24.65	94.55	24.65	24.65	24.65		
cryo tgt	element			Al	Al		Al	Al	Al		
window	thickness	mg/cm2	38.6		38.6		38.6		38.6		
exit	element							Be	Be		
window	thickness	mg/cm2	93.8	93.8	93.8	93.8	93.8				
	run time	hours	10	10	10						1175
time	(100% eff.)	days	0.4	0.4	0.4	0.4	1.7	6.9	38.7		49.0
	installation	hours									0
	time	days	0.0	0.0	0.0	0.0					0.0
dose rate at	method 1	urem/hr	0.55	0.52	0.39	0.09	0.55	0.63	0.69		
the fence post	method 2	urem/hr									
(run time)	conservative	urem/hr	0.55	0.52	0.39	0.09	0.55		0.69		
dose per setup		urem	6	5	4	1	23		643		784.6
% of annual dose budget %		0.1	0.1	0.0	0.0	0.2				7.846	
									he total t		58.5
									run tim	· ·	58.5
		own issued:			· ·					earch EH&S officer P. Dogtioropko	

date form issued:

October 15, 2020

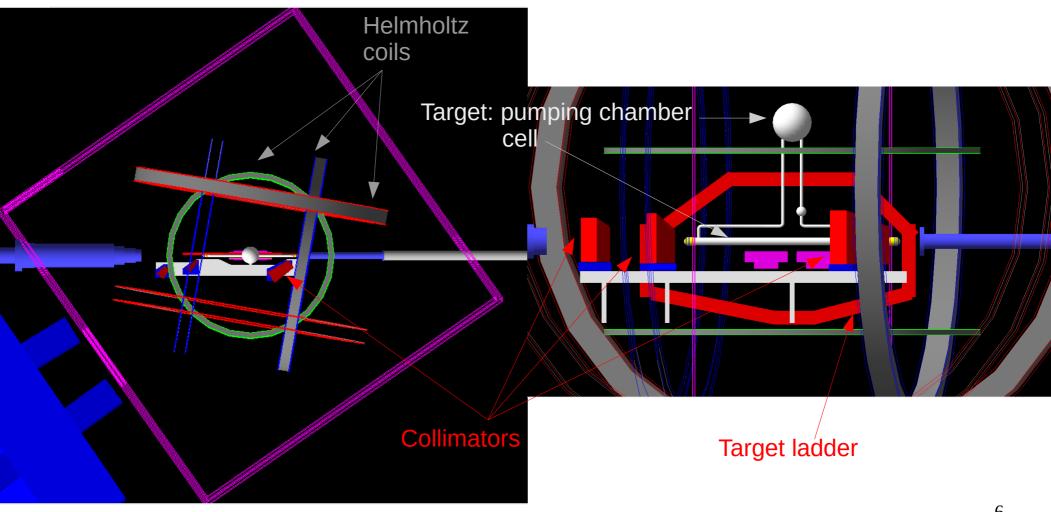
authors: P.Degtiarenko

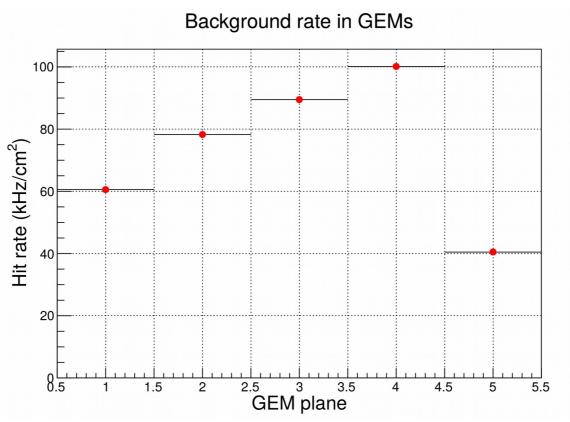
Radiation budget for GEn


Using same material thicknesses, my rough estimations and Pavel's simulation results are in rough agreement; My numbers are slightly higher

se	etup number		1	2	3	4	5	6	7		
beam	eam energy		4.4	4.4	4.4	4.4	4.4	6.6	8.8	totals:	
	current	$\mu A (CW)$	60.0	60.0	60.0	5.0	60.0	60.0	60.0		
exp't	element		ЗНе	N	Н	С	ЗНе	ЗНе	ЗНе		
target	thickness	mg/cm^2	97	904	65	280	97	97	97		
add'l	element		N	N	N	N	N	N	N		
target	thickness	mg/cm^2	26	26	26	97.8	26	26	26		
cryo tgt	element		Al	Al	Al		Al	Al	Al		
window	thickness	$ m mg/cm^2$	83	83	83		83	83	83		
entrance	element		Be								
window	thickness	mg/cm^2	46.9	46.9	46.9	46.9	46.9	46.9	46.9		
	element		Al								
	thickness	$ m mg/cm^2$	1.4	1.4	1.4	1.4	1.4	1.4	1.4		
exit	element		Be								
window	thickness	$ m mg/cm^2$	93.9	93.9	93.9	93.9	93.9	93.9	93.9		
	element		Al								
	thickness	mg/cm^2	1.4	1.4	1.4	1.4	1.4	1.4	1.4		
	run time	hours	10	10	10	10	41	165	929	1175	
	installation	hours								0	
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
dose rate at	method 1	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06		
the fence post	method 2	$\mu \mathrm{rem/hr}$									
(run time)	conservative	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06		
dose per setup		$\mu \mathrm{rem}$	9	32	7	1	36	161	985	1231	
% of annual dos	%	0.1	0.3	0.1	0.0	0.4	1.6	9.8	12.3%		
% of allowed dose for the total time											
% of allowed dose for the run time											

Table 1: Estimated radiation budget for GEn. Radiation rate numbers are taken from the GMn E12-09-019 radiation budget form and rescaled by luminosity and material thicknesses.


GEn geometry implementation in G4SBS

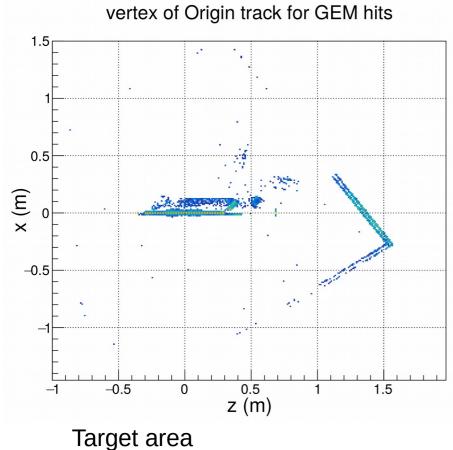

GEn geometry implementation in G4SBS

Fully detailed target geometry: helmhotlz coils, target ladder, collimators

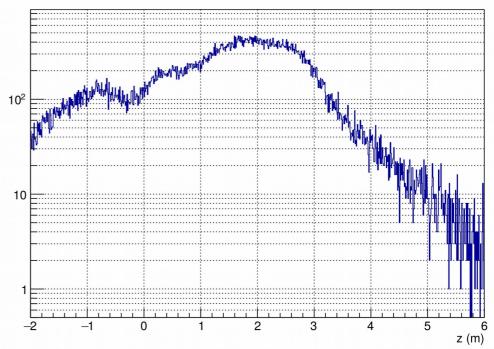
Detector rates / occupancies: GEMs

Background in GEMs for GEn 10.18 GeV2 with target collimators comparable to GMn 13.5 GeV2 with full beam line shielding.

From the studies made with GMn:


- Such rates are manageable for the tracking
- GEM occupancies at 100 kHz/cm2: * 25-30% with only zero suppression;

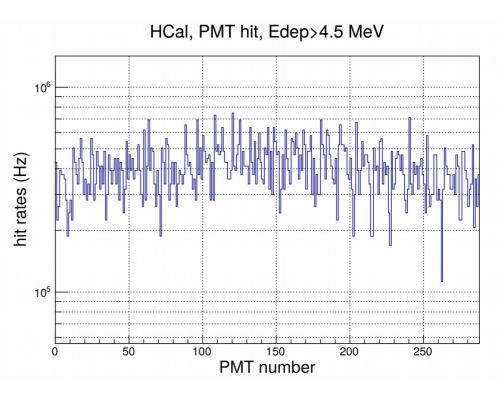
* 10-15% with pulse shape selection;



Detector rates / occupancies: GEMs

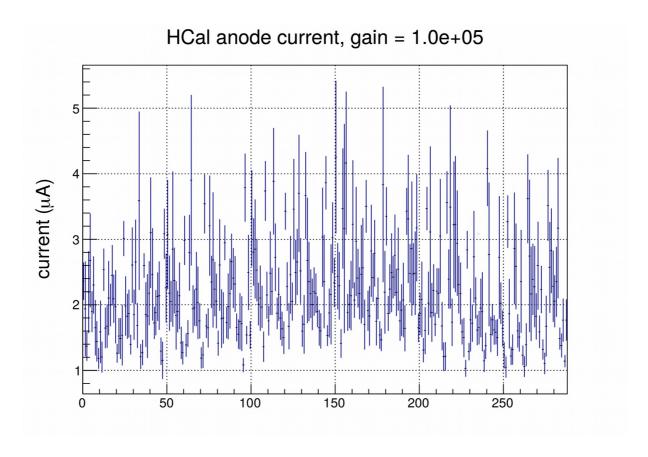
Origin of GEM background:

projected z vertex at x = 0 for SD tracks for GEM hits


A significant fraction of the background does come from the downstream beam pipe and could probably be shielded.

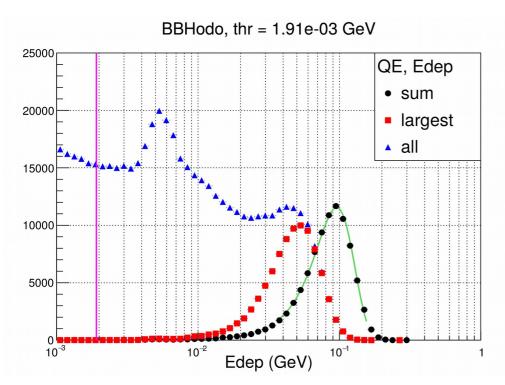
Detector rates / occupancies: HCal

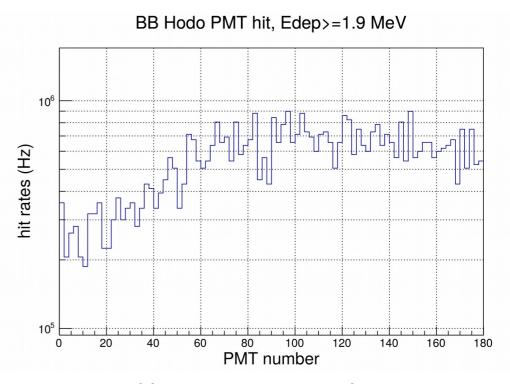
Threshold of individual hits set to 1% of the sum average



Resulting rates: 300-500 kHz => Occupancy (100ns gate): 3-5%

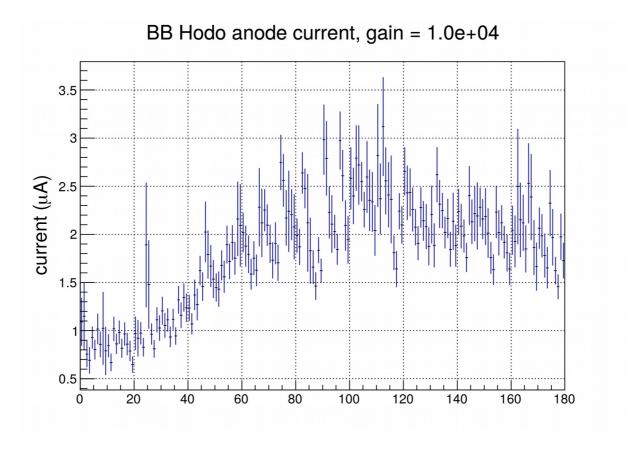
PMTs anode currents: HCal


Anode current estimation: using the sum of **all** p.e. detected in the PMTs


2-5 uA drawn: 2-5 mC drawn over GEn 10.18 GeV2 alone

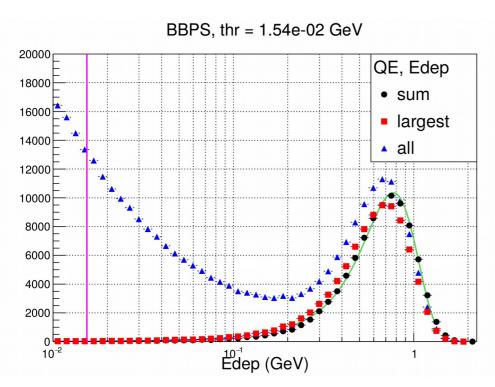
Detector rates / occupancies: BB Hodoscope

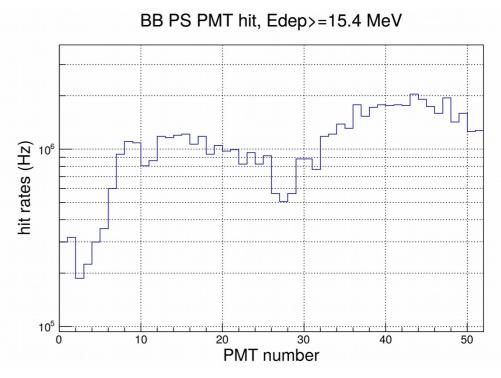
Threshold of individual hits set to 2% of the sum average



Resulting rates: 200-500 kHz => Occupancy (100ns gate): 2-5%

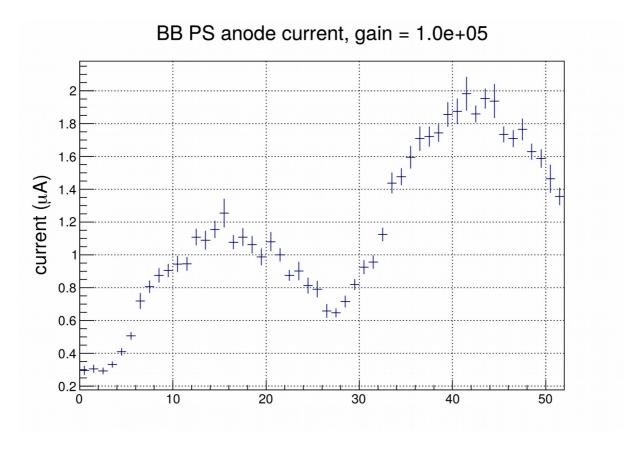
PMTs anode currents: BB Hodoscope


Anode current estimation: using the sum of **all** p.e. detected in the PMTs


1-3 uA drawn: 1-3 mC drawn over GEn 10.18 GeV2 alone

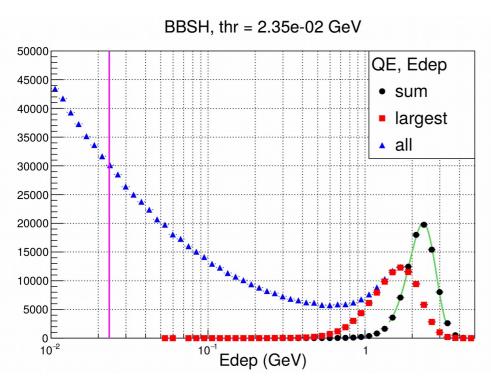
Detector rates / occupancies: BB PS

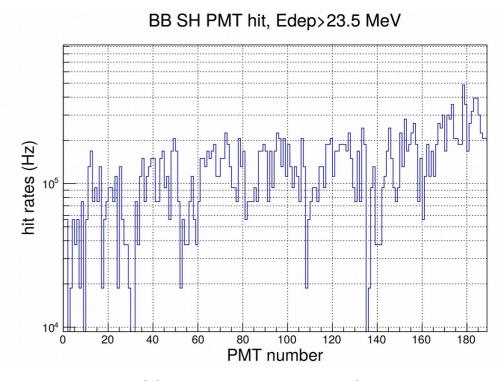
Threshold of individual hits set to 2% of the sum average



Resulting rates: 300 kHz - 2 MHz => Occupancy (100ns gate): 3-20%

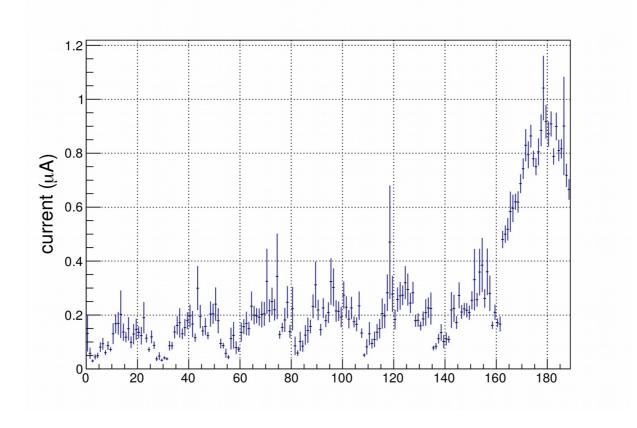
PMTs anode currents: BB PS


Anode current estimation: using the sum of **all** p.e. detected in the PMTs


1-2 uA drawn: 1-2 mC drawn over GEn 10.18 GeV2 alone

Detector rates / occupancies: BB SH

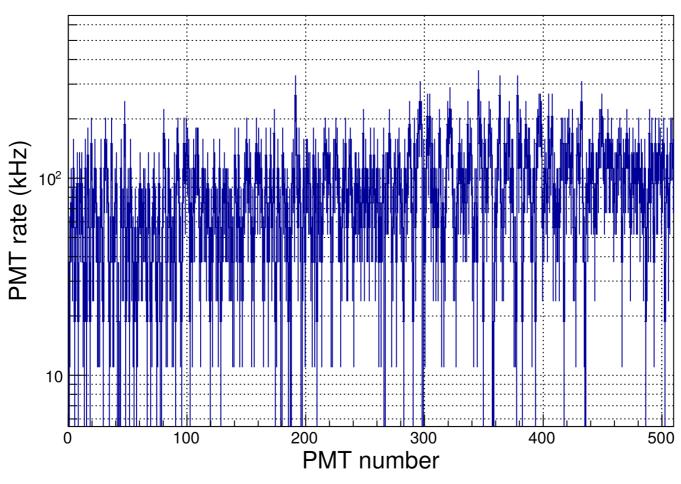
Threshold of individual hits set to 1% of the sum average



Resulting rates: 100-200 kHz => Occupancy (100ns gate): 1-2%

PMTs anode currents: BB SH

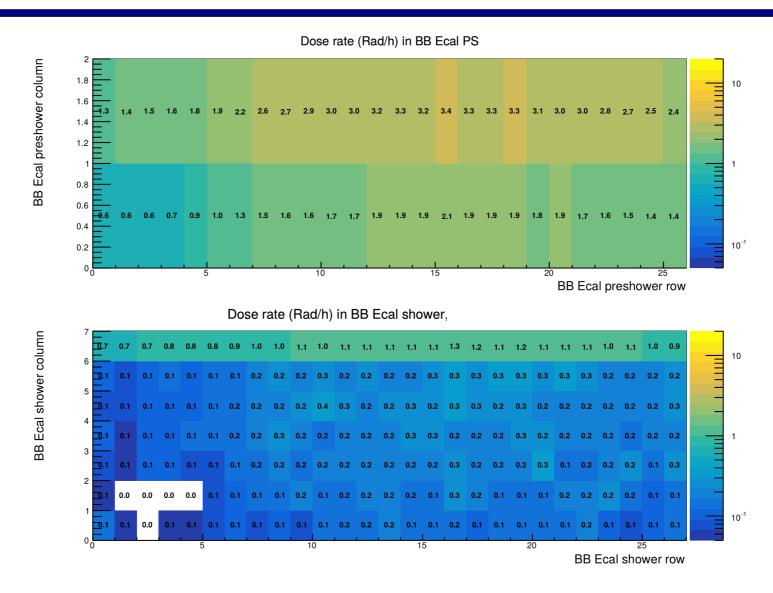
Anode current estimation: using the sum of **all** p.e. detected in the PMTs



0.2 - 1 uA drawn: 0.2 - 1 mC drawn over GEn 10.18 GeV2 alone

Detector rates / occupancies: GRINCH

Background rate in GRINCH


Resulting rates: 100-200 kHz

=> Occupancy (100ns gate): 1-2%

Number of PMTs low enough that current drawn is not a concern

Dose rate in BB PS/SH

Dose rate around 3 Rad/h for BB PS. BBPS blocks changed for GMn, to withstand higher does rates.

Summary and outlook

Are the radiation levels expected to be generated in the hall acceptable?

The current radiation budget estimations show that GEn should use at most 12.3% of the radiation budget, and less than 100% of the budget allowed for the running period.

The estimations are not finalized, but the worse estimation should be conservative.

Is any local shielding required to minimize the effects of radiation in the equipment?

The background levels in the equipment are acceptable and should not significantly affect their performances

However, our simulations show that we might achieve a further reduction of the background levels by shielding the BigBite detector from the beam line.

Backup

