Gen ERR charge item 6: Radiation and Shielding

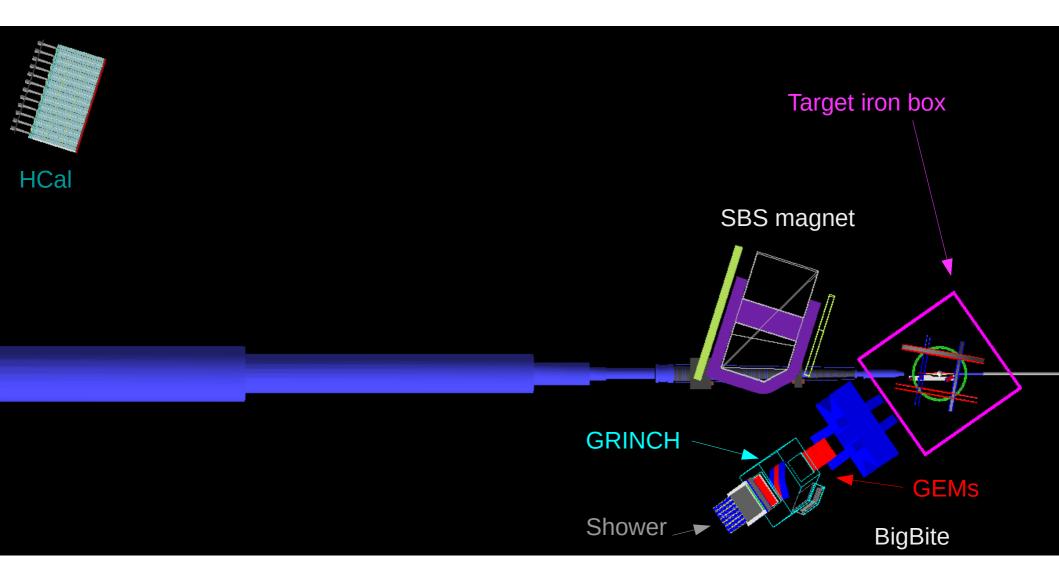
Eric Fuchey University of Connecticut

October 22nd, 2020

Are the radiation levels expected to be generated in the hall acceptable? Is any local shielding required to minimize the effects of radiation in the equipment?

To address this, we need:

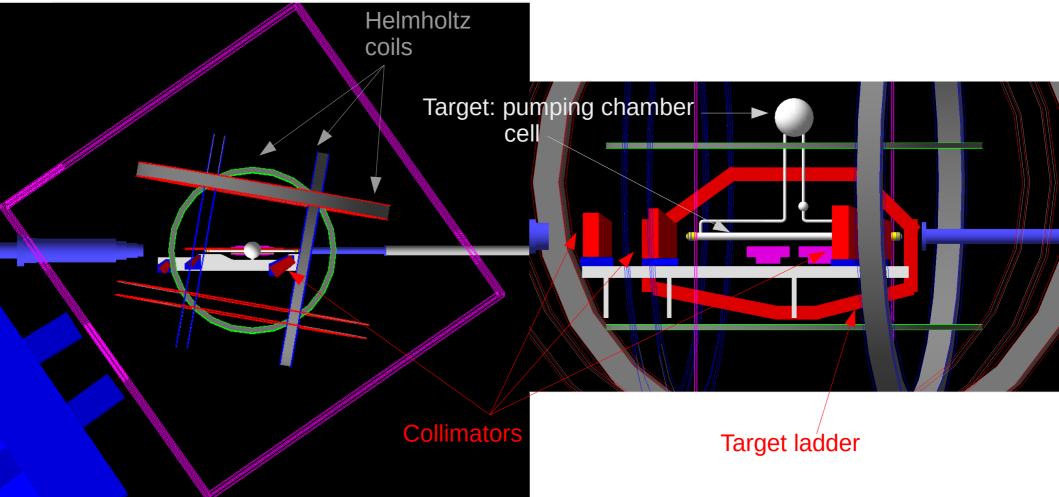
- * Evaluation of radiation budget for G_{E}^{n}
- * Evaluation of beam induced background in the individual detectors for G_{F}^{n}

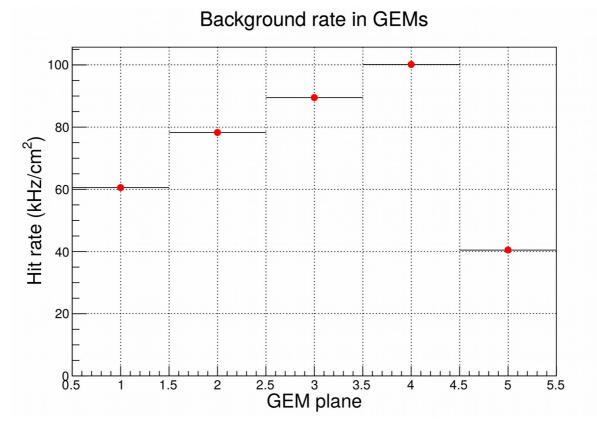

Radiation budget for GEn

Estimation of radiation budget for GEn by P. Degtiarenko

Hall:	Α					RAI	DIAT	ION	BU	DGET FORM page:	1 of 1
Exp. #	GEn E12-09-016	rev:	0		run	dates:	TBD			name of liaison: Todd Averett, Eric Fuchey	
S	setup number		1	2	3	4	5	6	7		
beam	energy	GeV	4.4	4.4	4.4	4.4	4.4	6.6	8.8		totals:
	current	uA(CW)	60.0	60.0	60.0	5.0	60.0	60.0	60.0		
exp't	element		He-3	N	Н	С	He-3	He-3	He-3		
target	thickness	mg/cm2	97	904	65	280	97	97	97		
add'l	element		Be	Be	Be	Be	Be	Be	Be		
target 1	thickness	mg/cm2	46.9	46.9	46.9	46.9	46.9	46.9	46.9		
add'l	element		Al	Al	Al	Al	Al	Al	Al		
target 2	thickness	mg/cm2	2.8	2.8	2.8	2.8	2.8	2.8	2.8		
add'l	element		Ν	Ν	N	Ν	Ν	Ν	N		
target 3	thickness	mg/cm2	26	26	26	97.8	26	26	26		
cryo tgt	element		Al	Al	Al		Al	Al	Al		
window	thickness	mg/cm2	83	83	83		83	83	83		
exit	element					Be		Be	Be		
window	thickness	mg/cm2	93.9	93.9	93.9	93.9	93.9	93.9	93.9		
	run time	hours	10	10	10	10		165	929		1175
time	(100% eff.)	days	0.4	0.4	0.4	0.4	1.7	6.9	38.7		49.0
	installation	hours									0
	time	days	0.0	0.0	0.0	0.0			0.0		0.0
dose rate at	method 1	urem/hr	0.68	2.91	0.50	0.09	0.68	0.77	0.85		
the fence post	method 2	urem/hr									
(run time)	conservative	urem/hr	0.68	2.91	0.50	0.09	0.68	0.77	0.85		
dose per setup		urem	7	29	5	1	28	128	787		983.8
% of annual do	se budget	%	0.1	0.3	0.1	0.0			7.9		9.838
								ose for t			73.34
								se for the <i>lt with Ph</i>		e only earch EH&S officer	73.34
	<u>date f</u>	orm issued:	0	ctober	19, 202					P.Degtiarenko	

<10% of annual dose budget <100% of allowed dose for the period


GEn geometry implementation in G4SBS



GEn geometry implementation in G4SBS

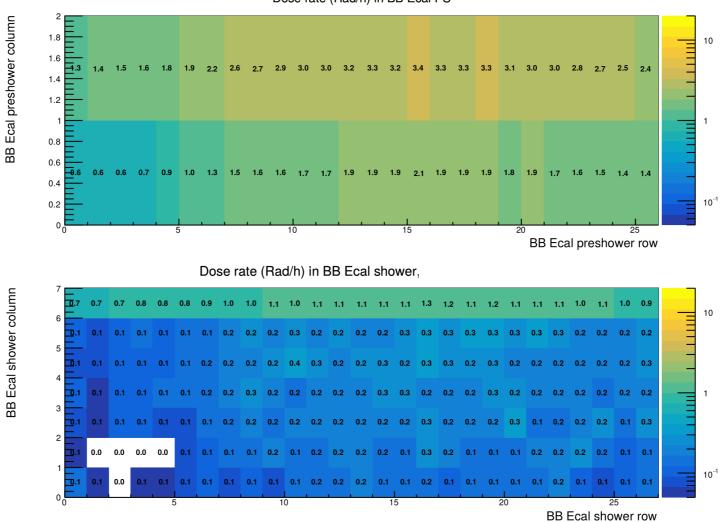
Fully detailed target geometry: helmhotlz coils, target ladder, collimators

Detector rates / occupancies: GEMs

Background in GEMs for GEn 10.18 GeV2 with target collimators comparable to GMn 13.5 GeV2 with full beam line shielding.

From the studies made with GMn:

- Such rates are manageable for the tracking
- GEM occupancies at 100 kHz/cm2: * 25-30% with only zero suppression;


* 10-15% with pulse shape selection;

Average rates and occupancies in PMT based detectors. Occupancies are evaluted assuming a 100 ns data acquisition window.

Detector	Threshold (MeV)	Average rate (kHz)	Occupancy (100 ns)		
HCal	4.5	417	4.2 %		
Hodoscope	1.9	293	2.9 %		
Preshower	15.4	1095	11.0 %		
Shower	23.5	152	1.5 %		
GRINCH	-	54	0.5 %		

Dose rate in BB PS/SH

Dose rate (Rad/h) in BB Ecal PS

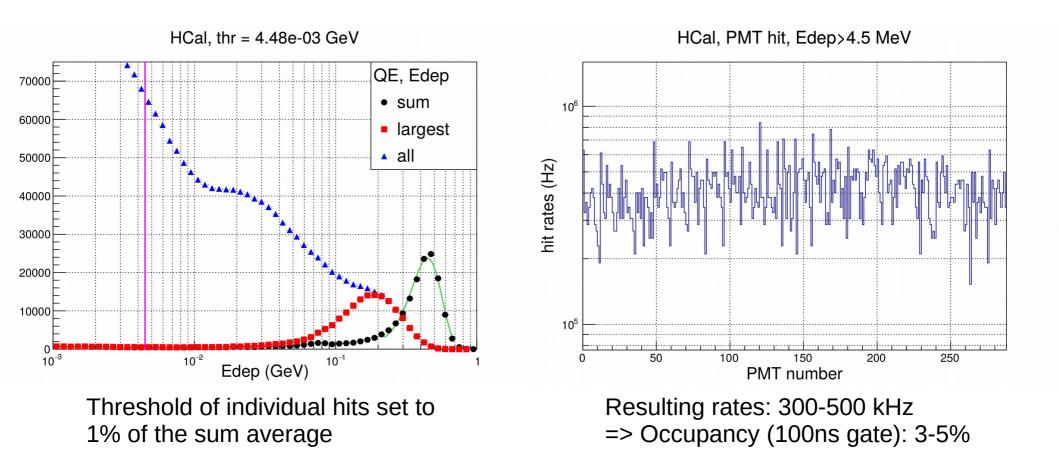
Dose rate around 3 Rad/h for BB PS. BBPS blocks changed for GMn, to withstand higher does rates.

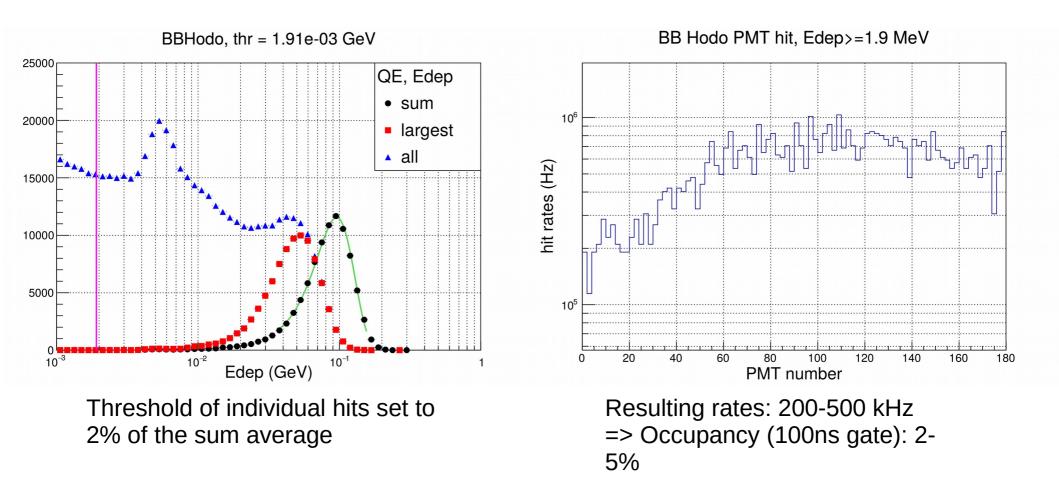
Are the radiation levels expected to be generated in the hall acceptable?

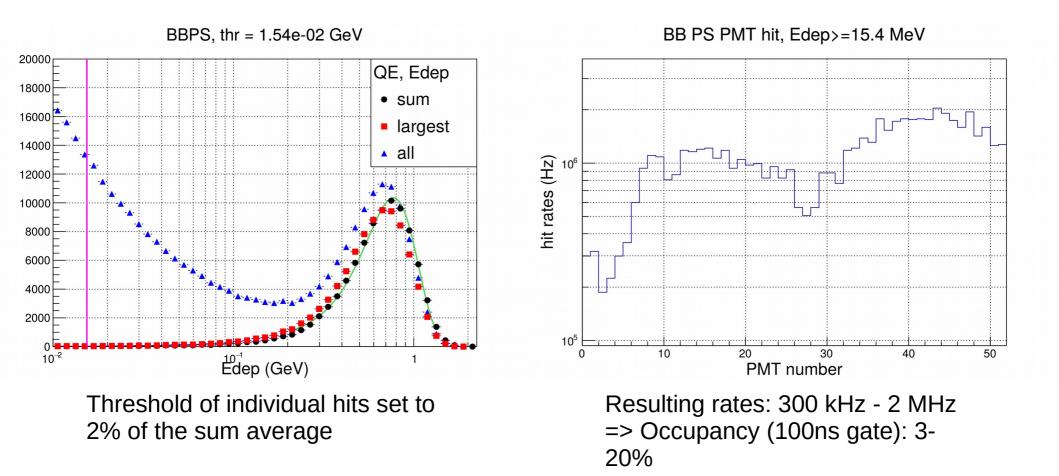
The current radiation budget estimations show that GEn should use at most 12.3% of the radiation budget, and less than 100% of the budget allowed for the running period.

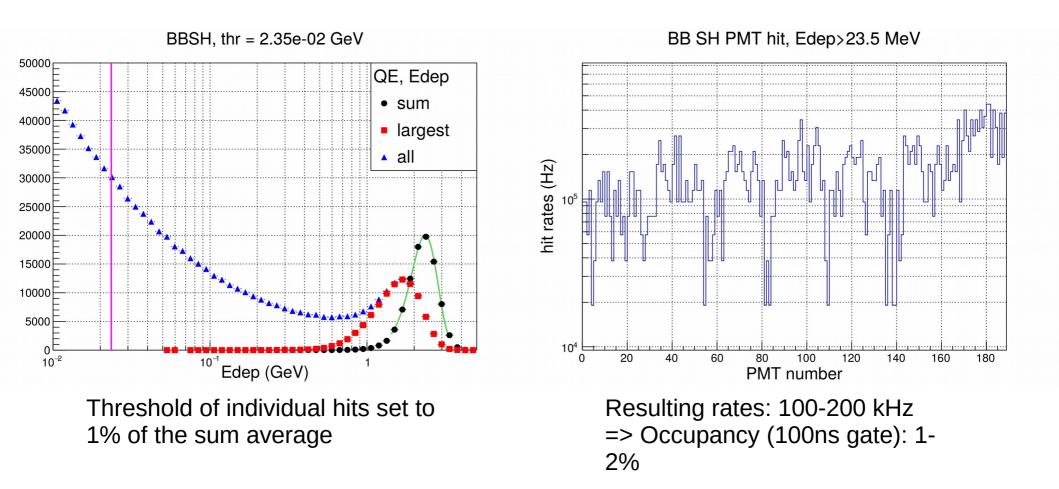
The estimations are not finalized, but the worse estimation should be conservative.

Is any local shielding required to minimize the effects of radiation in the equipment?


The background levels in the equipment are acceptable and should not significantly affect their performances However, we are still investigating the sources of background, in order to determine if a simple shielding design may provide a further reduction of the background levels in the BigBite detectors.

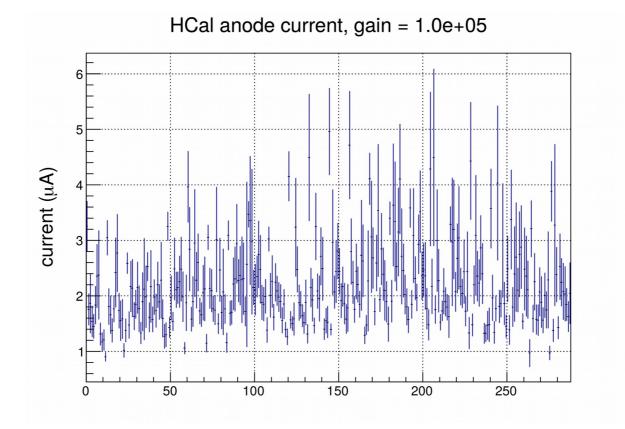

Backup


Detector rates / occupancies: HCal


Detector rates / occupancies: BB Hodoscope


Detector rates / occupancies: BB PS

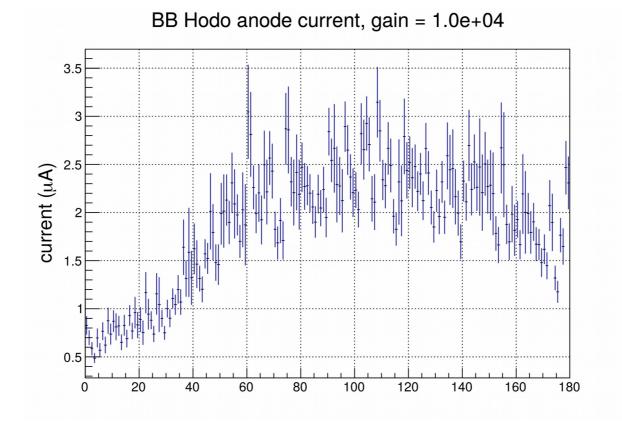
Detector rates / occupancies: BB SH


Detector rates / occupancies: GRINCH

Resulting rates: 100-200 kHz => Occupancy (100ns gate): 1-2% Number of PMTs low enough that current drawn is not a concern

PMTs anode currents: HCal

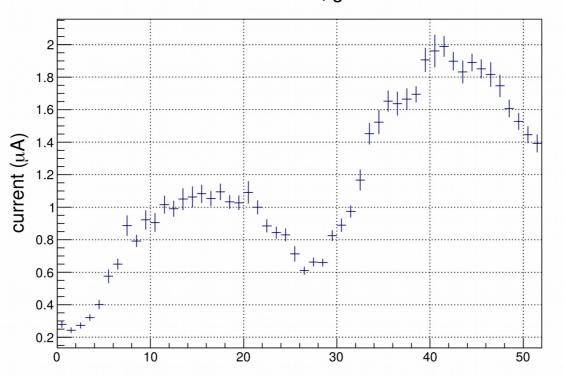
Anode current estimation: using the sum of **all** p.e. detected in the PMTs



2-5 uA drawn: 2-5 mC drawn over GEn 10.18 GeV2 alone

PMTs anode currents: BB Hodoscope

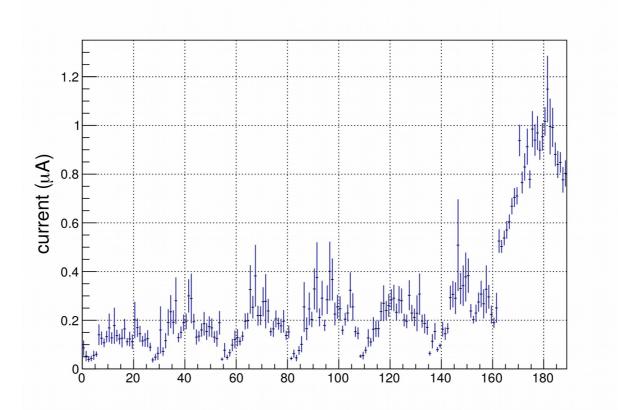
Anode current estimation: using the sum of **all** p.e. detected in the PMTs



1-3 uA drawn: 1-3 mC drawn over GEn 10.18 GeV2 alone

PMTs anode currents: BB PS

Anode current estimation: using the sum of **all** p.e. detected in the PMTs


BB PS anode current, gain = 1.0e+05

1-2 uA drawn: 1-2 mC drawn over GEn 10.18 GeV2 alone

PMTs anode currents: BB SH

Anode current estimation: using the sum of **all** p.e. detected in the PMTs

0.2 - 1 uA drawn: 0.2 - 1 mC drawn over GEn 10.18 GeV2 alone

setup number				2	3	4	5	6	7	
beam	energy	GeV	4.4	4.4	4.4	4.4	4.4	6.6	8.8	totals:
	current	$\mu A (CW)$	60.0	60.0	60.0	5.0	60.0	60.0	60.0	
exp't	element		3He	N	Н	С	3He	3He	3He	
target	thickness	mg/cm^2	97	904	65	280	97	97	97	
add'l	element		N	N	N	N	N	N	N	
target	thickness	mg/cm^2	26	26	26	97.8	26	26	26	
cryo tgt	element		Al	Al	Al		Al	Al	Al	
window	thickness	mg/cm^2	83	83	83		83	83	83	
entrance	element		Be							
window	thickness	mg/cm^2	46.9	46.9	46.9	46.9	46.9	46.9	46.9	
	element		Al							
	thickness	mg/cm^2	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
exit	element	-	Be							
window	thickness	mg/cm^2	93.9	93.9	93.9	93.9	93.9	93.9	93.9	
	element	-	Al							
	thickness	mg/cm^2	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
	run time	hours	10	10	10	10	41	165	929	1175
	installation	hours								0
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
dose rate at	method 1	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06	
the fence post	method 2	$\mu \mathrm{rem/hr}$								
(run time)	conservative	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06	
dose per setup		μ rem	9	32	7	1	36	161	985	1231
% of annual dos	e budget	%	0.1	0.3	0.1	0.0	0.4	1.6	9.8	12.3%
% of allowed dose for the total time										
% of allowed dose for the run time										91.7%

Table 1: Estimated radiation budget for GEn. Radiation rate numbers are taken from the GMn E12-09-019 radiation budget form and rescaled by luminosity and material thicknesses.