Gen ERR charge item 6: Radiation and Shielding

Eric Fuchey University of Connecticut

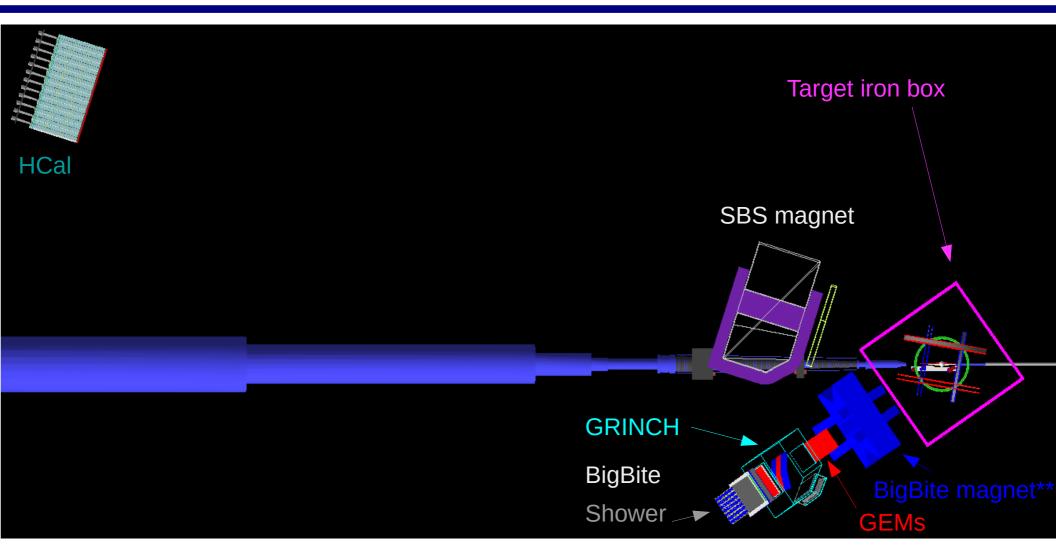
October 22nd, 2020

Are the radiation levels expected to be generated in the hall acceptable? Is any local shielding required to minimize the effects of radiation in the equipment?

To address this, we need:

- * Evaluation of radiation budget for G_{ϵ}^{n}
- * Evaluation of beam induced background in the individual detectors for $G_{\scriptscriptstyle F}^{\ \ n}$

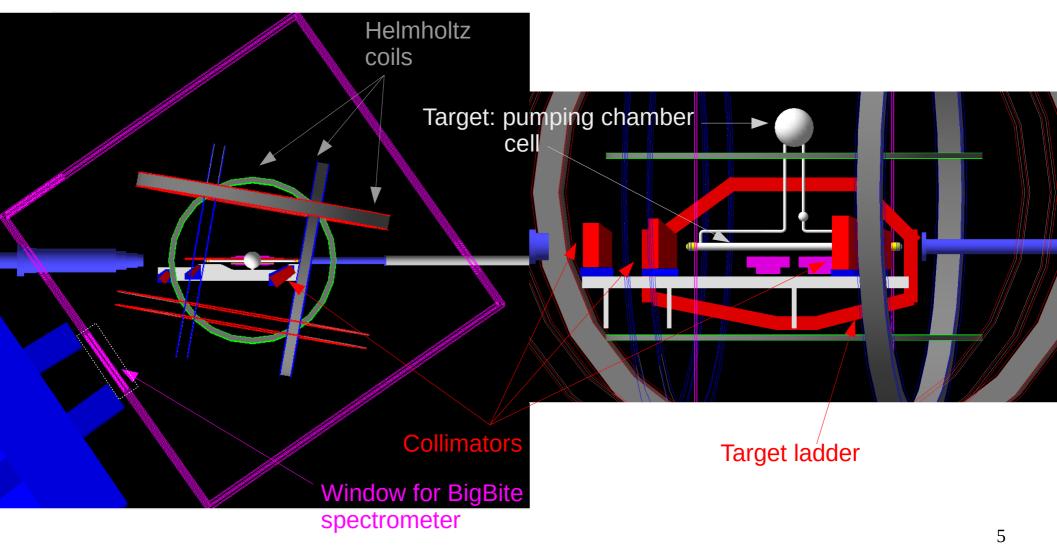
Radiation budget for GEn


Estimation of radiation budget for GEn by P. Degtiarenko

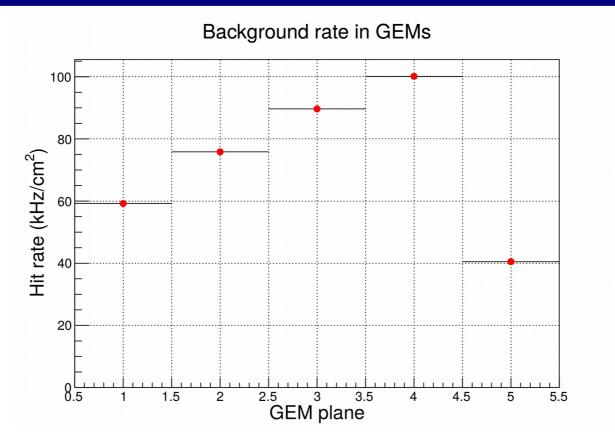
beam en cu	E12-09-016 cup number energy	rev:	0		run	dates	TDD			
beam en cu	nergy	lo v	1			uaics.	LRD			name of liaison: Todd Averett, Eric Fuchey
exp't el		C 17	1	2	3	4	5		7	
exp't el	urrent	GeV	4.4	4.4	4.4	4.4			8.8	totals:
· -	0,110	uA(CW)	60.0	60.0	60.0				60.0	
target th	lement		He-3	N	H			He-3	He-3	
	hickness	mg/cm2	97	904	65				97	
add'l el	lement		Be	Be	Be	Be	Be	Be	Be	
target 1 th	hickness	mg/cm2	46.9	46.9	46.9	46.9	46.9	46.9	46.9	
	lement		Al	Al	Al	Al	Al	Al	Al	
target 2 th	hickness	mg/cm2	2.8	2.8	2.8	2.8	2.8	2.8	2.8	
add'l el	lement		N	N	N	N	N	N	N	
target 3 th	hickness	mg/cm2	26	26	26	97.8	26	26	26	
cryo tgt el	lement		Al		Al		Al	Al	Al	
window th	hickness	mg/cm2	83	83	83		83	83	83	
******	lement								Be	
window th	hickness	mg/cm2	93.9	93.9	93.9	93.9	93.9	93.9	93.9	
ru	un time	hours	10	10	10	10		165	929	1175
time (1	100% eff.)	days	0.4	0.4	0.4	0.4	1.7	6.9	38.7	49.0
in	nstallation	hours								O
tir	ime	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
dose rate at me	nethod 1	urem/hr	0.68	2.91	0.50	0.09	0.68	0.77	0.85	
the fence post me	nethod 2	urem/hr								
(run time) co	onservative	urem/hr	0.68	2.91	0.50	0.09	0.68	0.77	0.85	
dose per setup		urem	7	29	5	1	28		787	983.8
% of annual dose b	budget	%	0.1	0.3	0.1	0.0			7.9	9.838
									he total t	
									run time	
					If > 2	00%, dis	cuss resu	lt with Ph	ysics Res	earch EH&S officer

<u>date form issued:</u> October 19, 2020 <u>authors:</u> P.Degtiarenko

GEn geometry implementation in G4SBS



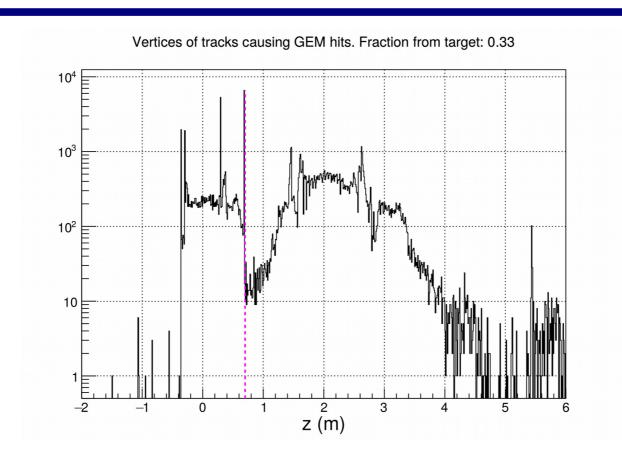
** need field clamp upstream of BB magnet;


GEn geometry implementation in G4SBS

Fully detailed target geometry: helmhotlz coils, target ladder, collimators

Detector rates / occupancies: GEMs

Background in GEMs for GEn 10.18 GeV2 with target collimators comparable to GMn 13.5 GeV2 with full beam line shielding.


From the studies made with GMn:

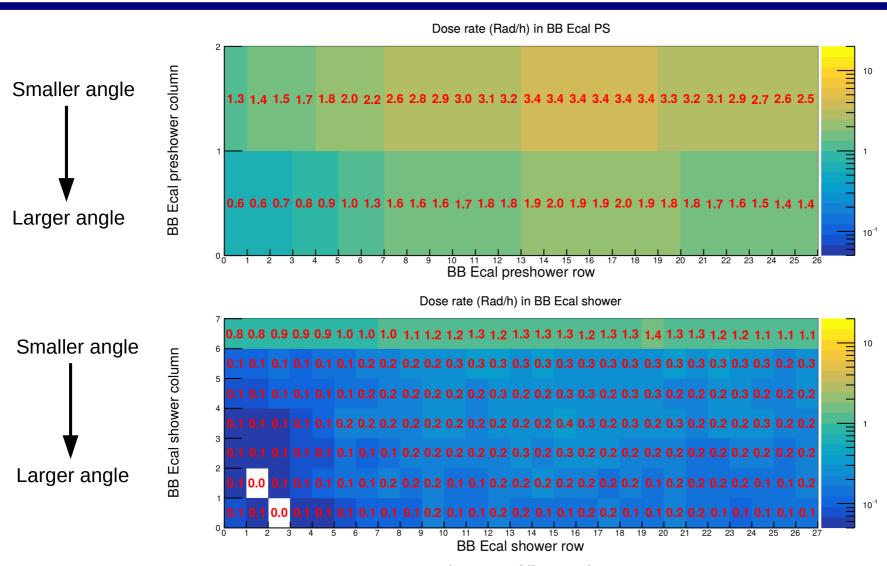
- Such rates are manageable for the tracking
- GEM occupancies at 100 kHz/cm2: * 25-30% with only zero suppression;
 - * 10-15% with pulse shape selection;

These numbers agree with the projections from the proposal

Detector rates / occupancies: GEMs

Fraction of the background coming from the target area: **33%** *A large fraction of the background can be reduced by shielding.* To obtain a full shielding design, we need a full tosca map and to incorporate the most up-to-date geometry for the iron box. Note: while shielding is wishable, it is not an absolute necessity (as it could be for GEp or to a lesser extent GMn)

Detector rates / occupancies:


PMT-based detectors

Average rates and occupancies in PMT based detectors. Occupancies are evaluted assuming a 80 ns data acquisition window. (conservative assumption)

Detector	Threshold (MeV)	Average rate (kHz)	Occupancy (80 ns)		
HCal	4.5	413	3.3 %		
Hodoscope	1.9	579	4.6 %		
Preshower	15.4	1113	8.9 %		
Shower	23.5	148	1.2 %		
GRINCH	-	87	0.7 %		

Dose rate in BB Preshower/Shower

Dose rate around 3 Rad/h at for BB PS. Such a dose rate can be withstood by the new BBPS modules with radiation hard lead glass.

Summary and outlook

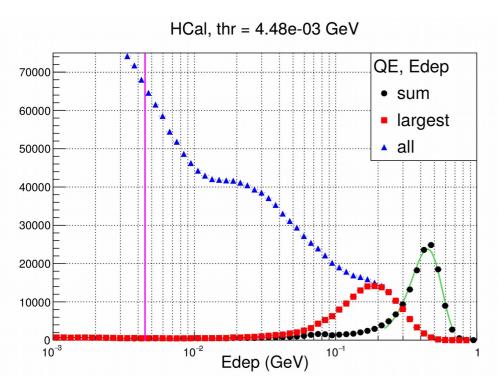
Are the radiation levels expected to be generated in the hall acceptable?

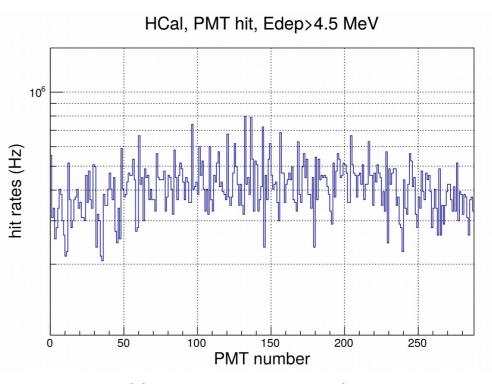
The current radiation budget estimations show that GEn should use at most 10% of the radiation budget, and less than 100% (75%) of the budget allowed for the running period.

The estimations are very close to final, and should not vary by much

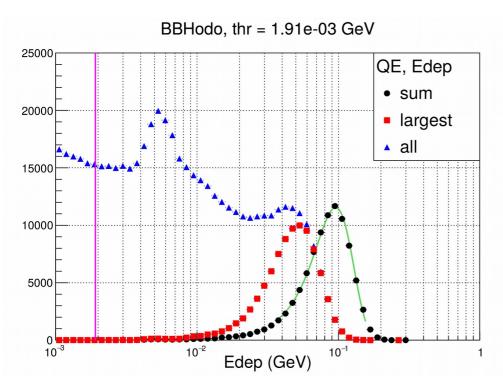
Is any local shielding required to minimize the effects of radiation in the equipment?

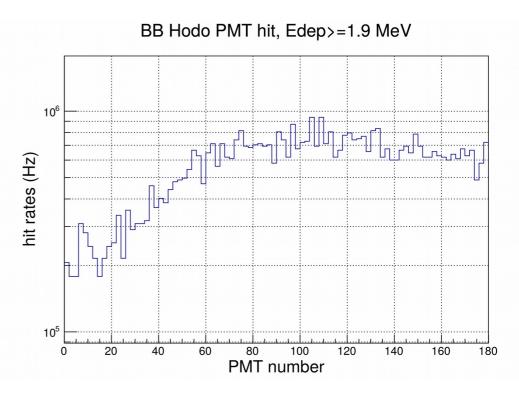
The background levels in the detectors are acceptable and should not significantly affect their performances.


Our simulations do indicate that a large fraction of the background could be shielded; however, a few geometry items need to be finalized and, most importantly, a full Tosca map would be required to optimize this shielding design.


Backup

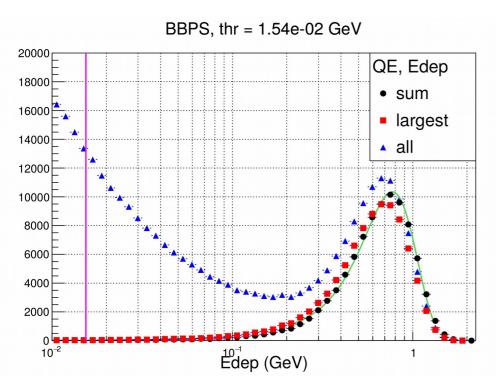
Detector rates / occupancies: HCal


Threshold of individual hits set to 1% of the sum average

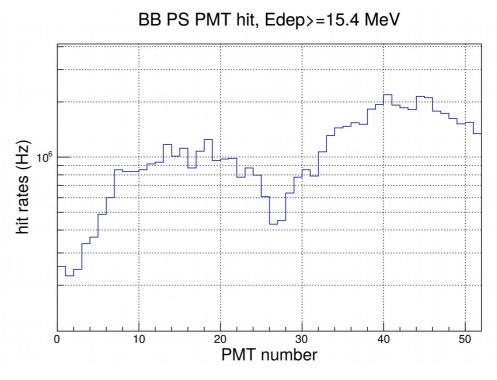

Resulting rates: 300-500 kHz => Occupancy (80ns gate): 2.4-4%

Detector rates / occupancies: BB Hodoscope

Threshold of individual hits set to 2% of the sum average

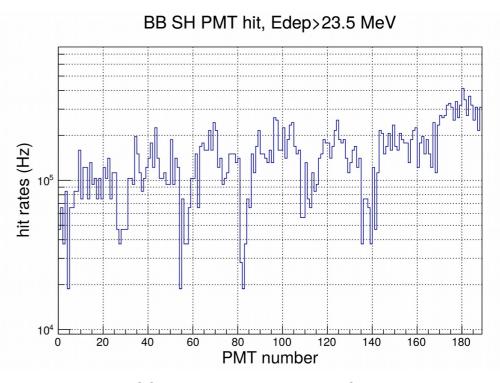


Resulting rates: 200-700 kHz

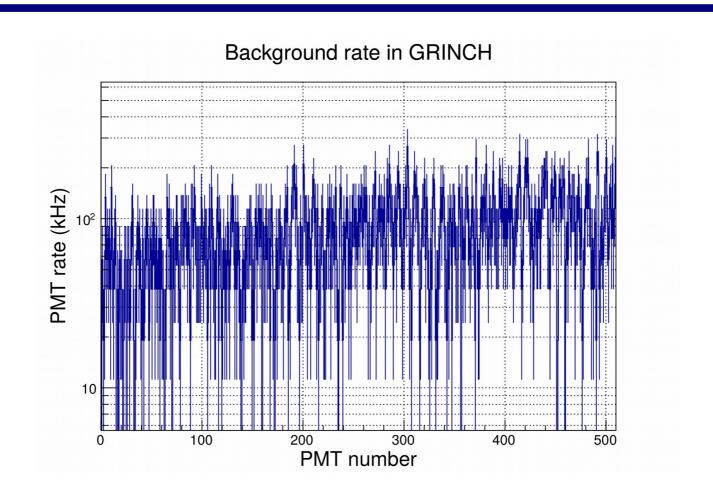

=> Occupancy (80ns gate): 1.6-5.6%

Detector rates / occupancies: BB PS


Threshold of individual hits set to 2% of the sum average


Resulting rates: 300 kHz - 2 MHz => Occupancy (80ns gate): 2.4-16%

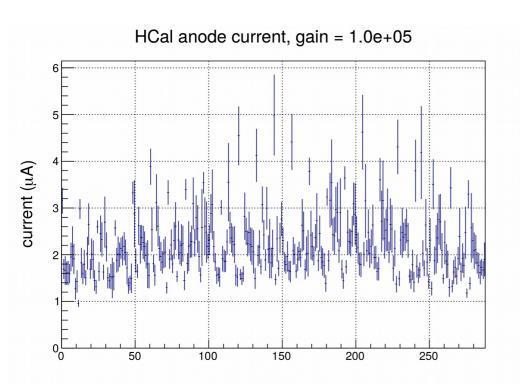
Detector rates / occupancies: BB SH

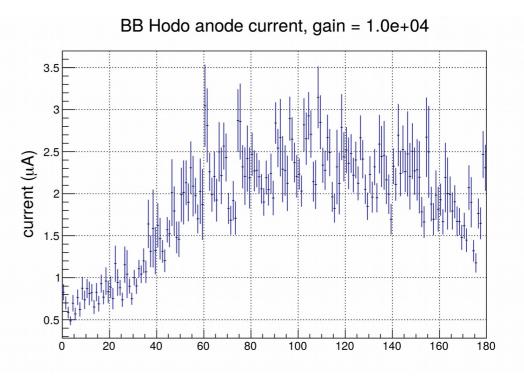

Threshold of individual hits set to 1% of the sum average

Resulting rates: 100-200 kHz => Occupancy (80ns gate): 0.8-1.6%

Detector rates / occupancies: GRINCH

Resulting rates (no threshold!): 50-200 kHz


=> Occupancy (80ns gate): 0.4-1.6%



PMTs anode currents:

HCal / hodoscope

Anode current estimation: using the sum of all p.e. detected in the PMTs

HCal:

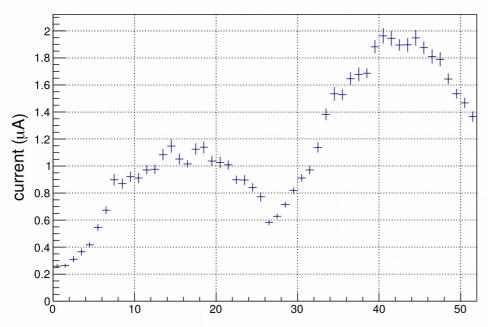
2-5 uA drawn (2.2 uA average);

2-5 mC drawn over GEn 10.18 GeV².

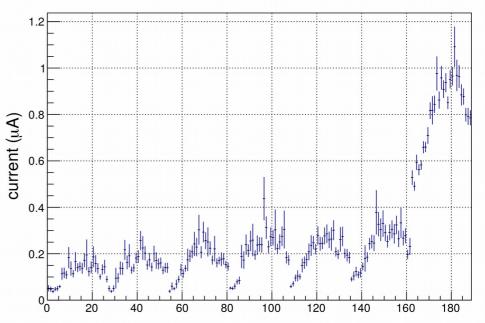
BBHodo:

1-3 uA drawn (1.9 uA average);

1-3 mC drawn over GEn 10.18 GeV².



PMTs anode currents:


BBPS

Anode current estimation: using the sum of **all** p.e. detected in the PMTs

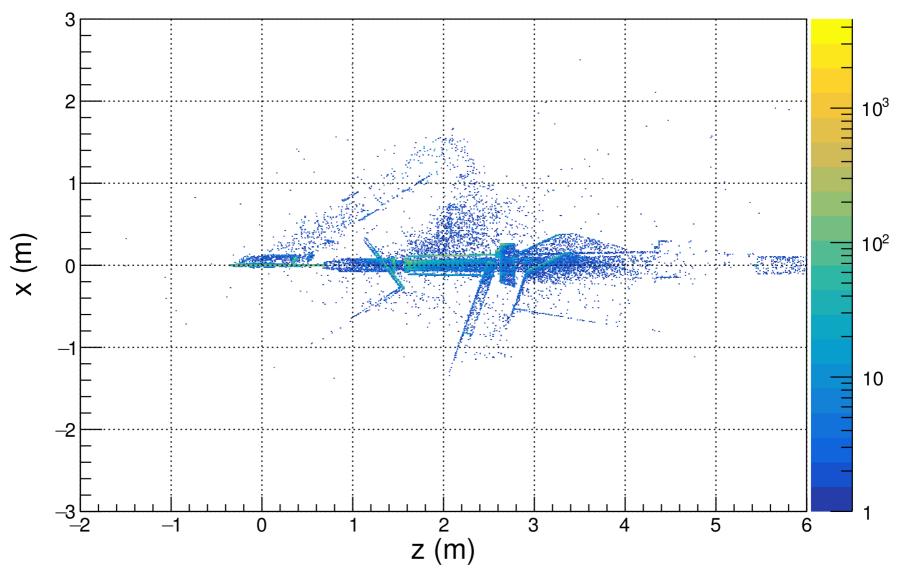
BB PS anode current, gain = 1.0e+05

PS:

- 1-2 uA drawn (1.1 uA average);
- 1-2 mC drawn over GEn 10.18 GeV².

SH:

- 0.2 1 uA drawn (0.3 uA average);
- 0.2 1 mC drawn over GEn 10.18 GeV².



Se	1	2	3	4	5	6	7			
beam	energy	${ m GeV}$	4.4	4.4	4.4	4.4	4.4	6.6	8.8	totals:
	current	$\mu A (CW)$	60.0	60.0	60.0	5.0	60.0	60.0	60.0	
exp't	element		3He	N	Н	С	ЗНе	ЗНе	ЗНе	
target	thickness	mg/cm^2	97	904	65	280	97	97	97	
add'l	element		N	N	N	N	N	N	N	
target	thickness	mg/cm^2	26	26	26	97.8	26	26	26	
cryo tgt	element	${ m mg/cm^2}$	Al	Al	Al		Al	Al	Al	
window	window thickness		83	83	83		83	83	83	
entrance	element		Be							
window	thickness	mg/cm^2	46.9	46.9	46.9	46.9	46.9	46.9	46.9	
	element		Al							
	thickness	mg/cm^2	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
exit	element		Be							
window	thickness	mg/cm^2	93.9	93.9	93.9	93.9	93.9	93.9	93.9	
	element		Al							
	thickness	mg/cm^2	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
	run time	hours	10	10	10	10	41	165	929	1175
	installation	hours								0
	time	days	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
dose rate at	method 1	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06	
the fence post	method 2	$\mu \mathrm{rem/hr}$								
(run time)	conservative	$\mu \mathrm{rem/hr}$	0.88	3.24	0.73	0.12	0.88	0.98	1.06	
dose per setup		$\mu \mathrm{rem}$	9	32	7	1	36	161	985	1231
% of annual dos	%	0.1	0.3	0.1	0.0	0.4	1.6	9.8	12.3%	
% of allowed dose for the total time										91.7%
% of allowed dose for the run time										91.7%

Table 1: Estimated radiation budget for GEn. Radiation rate numbers are taken from the GMn E12-09-019 radiation budget form and rescaled by luminosity and material thicknesses.

Detector rates / occupancies: GEMs

Vertices of tracks causing GEM hits.

