Large Acceptance Proton Form Factor Ratio Measurement up to 12 GeV² using Recoil Polarization Method

B.Wojtsekhowski for the SBS collaboration

1

Large Acceptance Proton Form Factor Ratio Measurement at 13 and 15 GeV² using Recoil Polarization Method

Experiment E12-07-109

E.Cisbani, M.Jones, N.Lyanage, L.Pentchev, A.Puckett, B.Wojtsekhowski

Electron-nucleon elastic scattering

Nucleon current, one-photon approximation, $\alpha_{em} = 1/137$,

$$\mathcal{J}^{\mu}_{hadron} = ie \bar{N}(p_f) \left[\gamma^{\nu} F_1(Q^2) + \frac{i \sigma^{\mu \nu} q_{\nu}}{2M} F_2(Q^2) \right] N(p_i)$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})} [(F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2(\frac{\theta}{2})]$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \sigma_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\frac{\theta}{2})\right]$$

Scientific case

The nucleon structure in terms of GPDs

Scientific case

1

Reduction formulas at $\boldsymbol{\xi} = \boldsymbol{t} = \boldsymbol{0}$ for DIS and $\boldsymbol{\xi} = \boldsymbol{0}$ for FFs $H^{q}(x,\xi=0,t=0) = q(x)$ $\tilde{H}^q(x,\xi=0,t=0) = \Delta q(x)$ $\int_{-1}^{+1} dx \, H^q(x,0,Q^2) \, = \, F_1^q(Q^2)$ $\int_{-1}^{+1} dx \, E^q(x,0,Q^2) \, = \, F_2^q(Q^2)$

The nucleon FFs

Method: Focal Plane Polarimeter

$$f^{\pm}(artheta,arphi) = rac{\epsilon(artheta,arphi)}{2\pi} \left[1 \pm A_y (P^{fpp}_x \sinarphi - P^{fpp}_y \cosarphi)
ight]$$

where \pm refers to electron beam helicity

$$A = rac{f^+ - f^-}{f^+ + f^-} = A_y \left(P_x^{fpp} \sin \varphi - P_y^{fpp} \cos \varphi \right)$$
, P_x^{fpp} is calculated

$$\mu_p rac{G_E^p}{G_M^p} = -\mu_p rac{E_e + E_e'}{2M_p} an rac{ heta_e}{2} \left(rac{P_x^{fpp}}{P_y^{fpp}} \sin \chi_ heta + \gamma_p (\mu_p - 1) \Delta \phi
ight)$$

B. Wojtsekhowski

Method: Focal Plane Polarimeter

proton momentum will be ~ 7.3 GeV/c

$$\mu_p rac{G_E^p}{G_M^p} = -\mu_p rac{E_e + E_e'}{2M_p} an rac{ heta_e}{2} \left(rac{P_x^{fpp}}{P_y^{fpp}} \sin \chi_ heta + \gamma_p (\mu_p - 1) \Delta \phi
ight)$$

B. Wojtsekhowski

Challenges in this experiment Form factor $\propto Q^{-4}$ Cross section $\propto E^2/Q^4 \times Q^{-8}$ Figure-of-Merit $\epsilon A_Y^2 \times \sigma \times \Omega$ $\propto E^2/Q^{16}$

Need large statistics => luminosity and solid angle

Max luminosity -> large background, radiation damage Large solid angle -> small bend -> huge background

Solution is a modern tracking detector - GEM

Concept of a large solid angle proton arm

Experiment: Layout and Parameters $H(\vec{e}, e'\vec{p})$

Beam: 75 μ A, 85% polarization Target: 30 cm liquid H₂ Electron arm at 30°, covers Q² range from 11-13 GeV² Proton arm at angle 17°, Ω = 35 msr , Spin precession angle is ~ 80°

Total 45 PAC days of production time resulting accuracy close to

 $\Delta(\mu G_E^p/G_M^p) = \pm 0.10$

GEp/SBS Q² acceptance and projected accuracy

$E_{beam},$	Q^2 range,	$\langle Q^2 \rangle$	$\theta_{_{ECAL}}$	$\langle E'_e \rangle$,	$\theta_{_{SBS}}$	$\langle P_p \rangle$	$\langle \sin \chi \rangle$	Event rate	Days	$\Delta \left(\mu G_E / G_M \right)$
GeV	GeV^2	${ m GeV}^2$	degrees	GeV	degrees	GeV	degrees	Hz		
6.6	4.5-7.0	5.5	29.0	3.66	25.7	3.77	0.72	291	2	0.029
8.8	6.5-10.0	7.8	26.7	4.64	22.1	5.01	0.84	72	11	0.038
11.0	10.0-14.5	11.7	29.0	4.79	16.9	7.08	0.99	13	32	0.081

The proton GEp form factor

Electron arm calorimeter in the CAD model

Proton arm in the CAD model

SBS trackers in polarimeter

- Protection resistors are outside the chamber: reliable, easy access.
- $\hfill\square$ Large alignment pins, away from the active area
- Wide frames on the two sides not in active area: better mechanical rigidity and more room for gas inlets, HV traces etc.
- Electronics arranged to minimize the material within active area.

Proton arm calorimeter in the CAD model

Summary

- After 16 years of development the GEP experiment is on track to be ready for installation in spring 2024
- Nucleon elastic form factors are important ingredients in the GPD models at high-Q²

Electron arm: Calorimeter's temperature, 3x3 group

Heat conductor, 0.25 mm Cu foil

B. Wojtsekhowski

Electron arm: Coordinate detector

Two layers: 6 modules (each has 16 x 14 x 2 counters)

B. Wojtsekhowski

April 24, 2023