PersonPower and Safety Documentation

Todd Averett, GEn-II ERR, 22-Oct-2020

Users Committed to GEn-II:

University of Virginia: N. Liyanage, 50% postdoc, 25% research scientist, thesis student (Sean Jeffas)

• <u>University of Virginia:</u> X. Zheng, postdoc, graduate student

University of Virginia: G. Cates, postdoc, student, senior scientist

• Glasgow: D. Hamilton, R. Montgomery, 2 graduate students

• <u>Stony Brook:</u> Jan Bernauer, postdoc (Ethan Kline)

William & Mary:
T. Averett, 50% postdoc (B. Yale), thesis student (Jack)

Jackson)

• <u>UConn:</u> A. Puckett, Postdoc, 2 grads

<u>CNU:</u>
E. Brasch, P. Monaghan, masters student, undergrads

• <u>Temple Univ.:</u> J. Napolitano, D. Jones, graduate student

Jefferson Lab Scientists: B. Wojtsekhowski, JP Chen, D. Flay, A.

Camsonne, M. Jones

<u>Jefferson Lab Postdocs:</u> A. Tadepalli, S. Barcus,

BigBite Responsibilities

Note: The BigBite spectrometer will be commissioned and used for the previous experiment, GMn, and will not be modified for GEn-II

Equipment	Owner	Maintenance	Runtime
Magnets	Jack Segal	Jack Segal	Jack Segal
Platforms	Jessie Butler	Jessie Butler	Jessie Butler
GEMs	E. Cisbani (INFN), N. Liyanage (UVa)	INFN, UVa	User collaborators
GRINCH	T. Averett (W&M)	T. Averett	User collaborators
Hodoscopes	Glasgow Group	Glasgow Group, Wojtsekhowski	User Collaborators
Pre/Shower	B. Wojtsekhowski	B. Wojtsekhowski	User Collaborators

SuperBigBite Responsibilities

Note: The SBS magnet will be commissioned and used for the previous experiment, GMn, and will not be modified for GEn-II

Equipment	Owner	Maintenance	Runtime
Magnets	Jack Segal	Jack Segal	MCC
Platforms	Jessie Butler	Jessie Butler	Jessie Butler
HCAL	B. Quinn (CMU), S. Barcus (JLab)	S. Barcus	Users
GEM Veto	N. Liyanage (UVa)	N. Liyanage	Users
DAQ (BB, SBS)	M. Jones, A. Camsonne (JLab)	M. Jones, A. Camsonne (JLab)	M. Jones, A. Camsonne (JLab)

Additional Subsystem Responsibilities

• Polarized target: Cates, Averett, Flay, Tadepalli, JP Chen

Simulation, data analysis: UConn group (A. Puckett)

• Beamline: D. Flay (JLab)?

Safety Documentation

Responsibility: T. Averett (W&M)

- We have documents from GMn for BigBite and SBS systems
- These will be modified as needed for GEn-II
- Drafts are available on this ERR website
 - Standard Hall Safety documents:
 - COO
 - ERG-(Emergency Response Guidelines) update for new Hall A configuration
 - ESAD
 - GEn-II radiation budget was calculated
 - Non-target OSPs:
 - BigBite Magnet
 - BigBite Detector Package
 - SBS Magnet
 - HCal and GEM veto
 - COVID-specific procedures, PPE

Target Safety Documents and Requirements

- We have target documents from Hall C Polarized Target Run: TOSP, LSOP
 - These will be the template but will require modification due to new design features and location in Hall A
- Changes for Hall A running
 - Target enclosure is possible ODH hazard-proper ventilation and entry procedures
 - Try to reduce radiation contamination from aluminum foil over beam windows
 - Laser
 - Power increase from 30 W to 50 W per laser.
 - Possibly use 200 W laser with single 1.2 mm fiber.
 - Enclosure door laser interlocks, procedure.
 - All aspects of laser safety will need to be reviewed: operation, alignment, safety equipment,..