LHRS Analysis for d_2^n

D. Flay

2/25/11

・ロト ・聞 ト ・ 国 ト ・ 国 ト

æ

OUTLINE

1 DATA QUALITY

- Run Lists and Kinematic Points
- β Peak Position
- Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (1) UPDATED RUN LISTS

- New run list: Nitrogen runs (LHRS)
- Found 4 more kinematic points (negative polarity ³He target):

1
$$p = 0.7 \text{ GeV}, E_b = 5.89 \text{ GeV}$$

2)
$$p = 1.12 \text{ GeV}, E_b = 4.73 \text{ GeV}$$

3
$$p = 1.19 \text{ GeV}, E_b = 4.73 \text{ GeV}$$

•
$$p = 1.26 \text{ GeV}, E_b = 4.73 \text{ GeV}$$

- Brings total space used on the farm for 1 st round replay for LHRS runs to \sim 400 GB
- The Nitrogen run list is on the Wiki (under the special runs section)
- The updated production run list will be made available as soon as data quality and efficiency studies are completed

▲ 글 ▶ ▲ 글 ▶

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (2) GC AND PR DATA: p = 0.7 GeV, $E_b = 5.89$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (3) VDC DATA: p = 0.7 GeV, $E_b = 5.89$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (4) GC and PR Data: p = 1.12 GeV, $E_b = 4.73$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (5) VDC DATA: p = 1.12 GeV, $E_b = 4.73$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (6) GC AND PR DATA: p = 1.19 GeV, $E_b = 4.73$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (7) VDC DATA: p = 1.19 GeV, $E_b = 4.73$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (8) GC and PR Data: p = 1.26 GeV, $E_b = 4.73$ GeV

Run Lists and Kinematic Points β Peak Position Cut Performance Histories

RUN LISTS AND KINEMATIC POINTS (9) VDC DATA: p = 1.26 GeV, $E_b = 4.73$ GeV

^{11/18}

β PEAK POSITION (1) Testing the Scintillator Calibration

 To test the scintillator calibration files, we can look at the β peak position as a function of run number:

 Data Quality
 Run Lists and Kinematic Points

 SUMMARY
 β Peak Position

 Cut Performance Histories

CUT PERFORMANCE HISTORIES (1) CUTS: T3, T4, VDC AND ONE TRACK

- Define the baseline cut: L.tr.n>0
 - Require at least one track

Cut Performance for Negative Polarity Data

CUT PERFORMANCE HISTORIES (2) Acceptance Rate Drop for Higher Momenta

- Why the 8-10% drop in some of the T3 acceptance rates?
 - Occurs for $p_0 = 1.6, 1.7 \text{ GeV runs}$
 - Tracks for which p > 10 GeV are responsible
- Looking at run 20207 ($p_0 = 1.7 \text{GeV}$)

CUT PERFORMANCE HISTORIES (3) ACCEPTANCE RATE DROP FOR HIGHER MOMENTA

• Events with very large p account for 50% of T3s and 94% of T4s

 We know these events scatter from the target edges (so they're not good to start with) DATA QUALITY SUMMARY SUMMARY RUN LISTS AND KINEMATIC POINTS β PEAK POSITION CUT PERFORMANCE HISTORIES

CUT PERFORMANCE HISTORIES (4) ACCEPTANCE RATE DROP FOR HIGHER MOMENTA

- Choosing a baseline cut to exclude these events explicitly yields results consistent with the rest of the run set:
 - T3 acc. rate: 97.88%
 - T4 acc. rate: 1.23%
- It would be interesting to see how these large p events populate the rest of the data set

SUMMARY

- Data Quality:
 - New kinematic points look good
 - Scintillator calibration looks good after replay of all data
 - Cut histories for T3, T4, no EDTM, VDC and one track look good
 - Add good momentum from tracking to baseline cut (?)
- Cross section code:
 - Added statistical error calculations to $\sigma_{\rm raw}$
 - Working on efficiency input files

WHAT'S NEXT?

- SAMC:
 - Look further into θ_{tg}, ϕ_{tg} (data)
 - Double-check optics (?)
- Farm replay (32-bit):
 - Get skim procedure running
- Data Quality:
 - Calculate GC, PR, VDC, T3 and β cut efficiencies for new kinematics
 - Cut performance histories:
 - GC ADC and TDC cuts
 - PR E/p
 - $\bigcirc y_{tg}, z_{ ext{react}}$
 - One-pass data