LHRS ANALYSIS FOR d_2^n beam Trip Studies, Scintillators, SAMC, and A_1^n Statistical Error

D. Flay

10/14/10

イロト イ理ト イヨト イヨト

OUTLINE

- Beam Studies
- Scintillator Study

2 SIMULATIONS AND CALCULATIONS

- SAMC Input Parameters
- A_1^n Error Estimation

3 SUMMARY

Beam Studies Scintillator Study

BEAM TRIP STUDY (1) BEAMTRIP CLASS

- I have written a class BeamTrip
 - Combines the three scripts 'FindBeamTrips.C','ProcessCuts.C', and 'CheckBeamTrips.C' so that we can do the beam trip analysis all at once
 - There is a README and a CHANGELOG available to see how the code works and all the changes I've been making
 - You can find my code <u>here</u>

DATA ANALYSIS

SIMULATIONS AND CALCULATIONS SUMMARY BEAM STUDIES SCINTILLATOR STUDY

・ロト ・聞 ト ・ ヨト ・ ヨトー

э

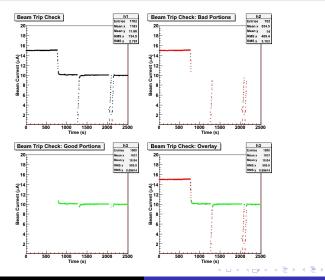
BEAM TRIP STUDY (2) Completed Kinematics

Completed Kinematics: Negative Polarity				
E (GeV)	<i>p</i> (GeV)	# of Runs	$I_{\text{avg.}}$ (μ A)	$Q_{\rm tot.}$ (C)
4.73	0.60	11	15.15	0.4365
5.89	0.60	21	14.85	0.9850
4.73	0.80	13	15.16	0.3947
5.89	0.90	19	15.10	0.6906
5.89	1.13	20	15.13	0.9142
5.89	1.20	19	14.81	0.6274
5.89	1.27	20	15.07	1.0346
4.73	1.42	11	14.89	0.8186
5.89	1.42	14	15.04	0.9471
4.73	1.51	18	15.14	1.1425
5.89	1.51	19	15.02	1.2765
4.73	1.60	18	15.13	1.1589
5.89	1.60	21	14.95	1.5287
5.89	1.70	10	15.06	1.2977

DATA ANALYSIS

BEAM STUDIES SCINTILLATOR STUDY

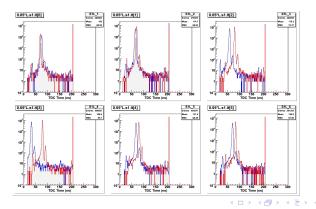
BEAM TRIP STUDY (3) QUESTIONABLE RUNS


Questionable Runs: Negative Polarity			
E (GeV)	p (GeV)	Questionable Runs	
4.73	0.60	-	
5.89	0.60	20157,20158	
4.73	0.80	-	
5.89	0.90	_	
5.89	1.13	_	
5.89	1.20	$20477^{\dagger}, 20480^{\dagger},$	
		$20551 - 20553^{\dagger}, 20565^{\dagger}$	
5.89	1.27	20287–20289, 20290 [†] ,20304	
4.73	1.42	$20556^{\dagger}, 20558^{\dagger}, 20569,$	
		20571–20572 [†] , 20580 [†] , 20583 [†] , 20585	
5.89	1.42	20279 [†] ,20280 [†] , 20281 [†] , 20282–20285	
4.73	1.51	$20390^{\dagger}, 20391$	
5.89	1.51	20431	
4.73	1.60	-	
5.89	1.60	20220 , 20241 [†]	
5.89	1.70	-	

- color code: $I \sim 1 \ \mu A$
 - $I \sim 2 \ \mu A$
 - $I \sim 5 \mu A$
 - $I\sim 10\;\mu\mathrm{A}$
 - $I \sim 12 \ \mu \text{A}$
 - $I \sim 13 \ \mu A$
 - $I\sim 14\text{--}15~\mu\text{A}$
- † = Junk run (short run time, no events, etc.)

DATA ANALYSIS

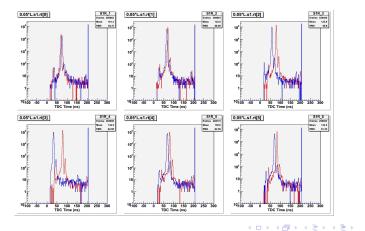
BEAM STUDIES SCINTILLATOR STUD


BEAM TRIP STUDY (4) QUESTIONABLE RUN: 20281 (p = 1.42 GeV, 5-PASS)

BEAM STUDIES SCINTILLATOR STUDY

SCINTILLATOR STUDY (1) S1 Raw Times

- We try to see how the S1 raw times look for each paddle (color code: left, right)
- As they are no cuts (for run 20676)

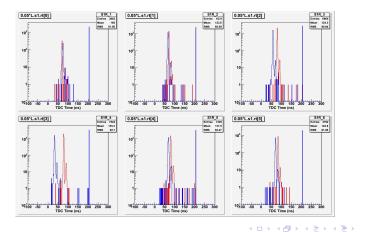


BEAM STUDIES SCINTILLATOR STUDY

э

SCINTILLATOR STUDY (2) S1 Raw Times

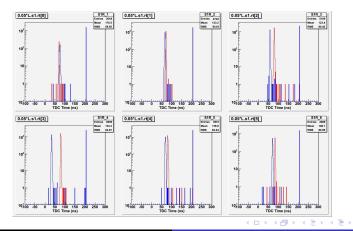
Trigger cuts



BEAM STUDIES SCINTILLATOR STUDY

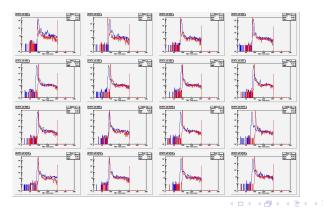
э

SCINTILLATOR STUDY (3) S1 Raw Times


Trigger cuts and electron cuts (GC > 300)

BEAM STUDIES SCINTILLATOR STUDY

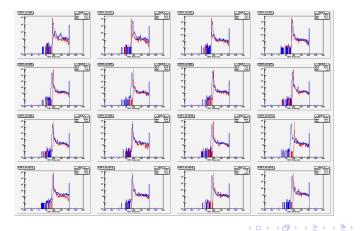
SCINTILLATOR STUDY (4) S1 Raw Times


 Trigger cuts and electron cuts (GC > 300, *E*/*p* > 0.54, L.prl1.e > 200)

BEAM STUDIES SCINTILLATOR STUDY

SCINTILLATOR STUDY (5) S2M RAW TIMES

- We try to see how the S1 raw times look for each paddle (color code: left, right)
- As they are no cuts (for run 20676)



BEAM STUDIES SCINTILLATOR STUDY

э

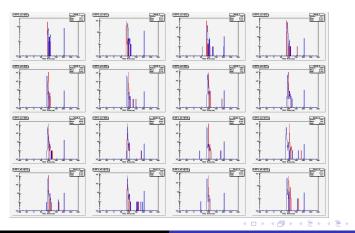
SCINTILLATOR STUDY (6) S2m Raw Times

Trigger cuts

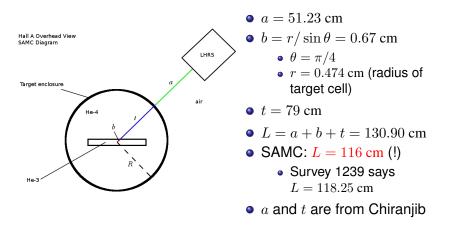
BEAM STUDIES SCINTILLATOR STUDY

э

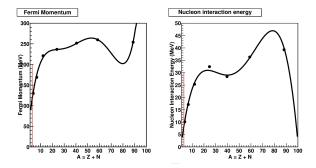
SCINTILLATOR STUDY (7) S2m Raw Times


• Trigger cuts and electron cuts (GC > 300)

BEAM STUDIES SCINTILLATOR STUDY


SCINTILLATOR STUDY (8) S2m Raw Times

 Trigger cuts and electron cuts (GC > 300, *E*/*p* > 0.54, L.prl1.e > 200)



SAMC INPUT PARAMETERS A_1^n Error Estimation

SAMC (1) Total Length From LHRS Front to Target

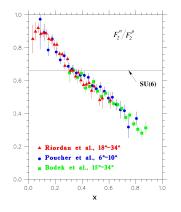
SAMC (2) Fermi Momentum and Interaction Energy per Nucleon

- Used Huan's code to get the fits
- $E_F \approx 120.79 \text{ MeV} (5^{\text{th}} \text{ order polynomial fit})$
- $\bar{\epsilon} \approx 8.59 \text{ MeV}$ (4th order polynomial fit)
- Data from *Phys. Rev. Lett.* **26**, 445 (1971)

 A_1^n ERROR ESTIMATION (1) R: Ratio of Unpolarized Structure Functions

• The estimation of the error on A_1^n is:

$$\Delta A_1^n = \frac{1}{P_b P_t R D \sqrt{N_{\text{eff}}}}$$


• A few assumptions go into determining *R*:

$$\begin{aligned} \mathcal{R}^{^{3}\text{He}} &= \frac{F_{2}^{^{3}\text{He}}}{F_{2}^{n} + 2F_{2}^{p}} \approx 1 & \text{The EMC ratio} \\ R^{np} &= \frac{F_{2}^{n}}{F_{2}^{p}} \approx 1 \\ \Rightarrow \mathbf{R} &= \frac{F_{2}^{n}}{F_{2}^{^{3}\text{He}}} = \frac{F_{2}^{n}}{F_{2}^{^{n}} + 2F_{2}^{p}} \approx \frac{1}{3} \end{aligned}$$

< ロ > < 同 > < 三 >

 A_1^n ERROR ESTIMATION (2) R: Ratio of Unpolarized Structure Functions

- However, SU(6) symmetry predicts $R^{np} = 2/3$
- SU(6) is broken, of course (plot from Xiaochao's thesis):

- *R^{np}* ≈ 1 ⇒ low *x*, large amount of sea quarks (our experiment covers 0.2 ≤ *x* ≤ 0.8)
- Maybe it is more accurate to approxmate R^{np} at each x bin?

< □ > < □ > < □ >

SAMC INPUT PARAMETERS A_1^n Error Estimation

< ロ > < 同 > < 回 > < 回 > < 回 > <

A_1^n ERROR ESTIMATION (3) R: Ratio of Unpolarized Structure Functions

• In which case, if we consider $R^{np} \approx 0.4$ ($x \sim 0.6$),

$$F_2^n = 0.4F_2^p$$

$$R = \frac{F_2^n}{F_2^{^3\text{He}}} = \frac{F_2^n}{F_2^n (1 + 2 \times 0.4)} = 0.56$$

SUMMARY

Beam studies:

- BeamTrip class: easier to manage large-scale jobs
- Overall, things look good for negative polarity data
 - A few runs for which $I \neq 15 \ \mu \text{A}$, but can keep them
 - Some junk runs that we can get rid of (no events, erratic beam quality, etc.)
- Scintillator study:
 - Even with strict e^- cuts, still cannot remove the large peak at $\sim 200~{\rm ns}$ in the S1 time average
- SAMC:
 - We have gathered all input values, including E_F and $\bar{\epsilon}$
 - Still having issues with the true distance between the target and the front of the LHRS
- A_1^n Statistical Error:

• $R = F_2^n/F_2^{^3{\rm He}}$ can be improved using a better est. of R^{np}

WHAT'S NEXT?

Beam studies:

- Double check negative polarity results
- Extend to positive polarity
- Scintillator study:
 - Maybe cut out the peak at ~ 200ns?
- SAMC:
 - Get this input parameter L figured out
- A_1^n Statistical Error:
 - Recalculate A_1^n with better estimations of R