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Polarimetry from Compton Scattering

The Compton scattering (e−γ → e−γ) cross section depends on the
e− and γ polarizations.

We use circularly polarized laser light to exploit this sensitivity to
longitudinal electron beam polarization.

Aexp =
S+ − S−

S+ − S−
= 〈Al〉PγPe
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Hall A Compton Polarimeter

Electron beam is diverted by magnetic chicane.

Photons and electrons interact at center of Fabry-Perot cavity.

Electron detector counts scattered electrons.

Photon detector counts scattered photons.
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Compton Hardware During d2
n Experiment

Infrared laser (λ = 1064 nm)

Fabry-Perot cavity for laser power
amplification (P̄ ≈ 400 W)

New scattered-photon detector

GSO cylinder: 6 cm diameter, 15 cm
length
PMT swapped out partway through d2

n

New scattered-electron detector
(microstrips)

Not functional during d2
n
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Compton DAQs During d2
n Experiment

For nearly all of d2
n , two Compton DAQs ran in parallel on copies of the

same signal

(Original) Saclay DAQ

First developed 10 years
ago

Computes asymmetry in
counting rates

Complicated system
spanning 2 racks of
electronics

No real experts at JLab
any more

(New) CMU DAQ

d2
n run was part of its

commissioning

Computes asymmetry in
energy-weighted
integrated signal

Only 2 crates (1 VME, 1
NIM)
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Compton Spectra

The Compton spectrum has a distinctive shape plotted
against energy

We can confirm we have good signal by measuring the
Compton spectrum with sampling data
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Asymmetry in Energy-Weighted Integrated Signal

Saclay DAQ computes asymmetry in counting rates

CMU DAQ computes asymmetry in E -weighted integrated signal S

Integration is over a 30-ms helicity window
Six different accumulators sum signals according to size, timing

Accn = Nn(P̄ − S̄n)

Sn = NnS̄ = NnP̄ − Accn

Laser-off data measures background B, which can then be removed
from the Compton asymmetry

An =
(S+

n − B+
n )− (S−n − B−n )

(S+
n − B+

n ) + (S−n − B−n )
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Cavity State Identification

Accurate identification of the Compton cavity state is crucial
Is it off? (Background measurement)
Is it on? (Compton events → asymmetry)
If it’s on, are the photons left or right circularly polarized?

Yet we discovered some systematic errors in the cavity state
identification ...
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Tracing Cavity State Misidentification

Cavity on/off state can be determined from a power measurement of
light transmitted through the cavity

EPICS variable (read every ∼ 1.5 seconds)
”Real-time” logic signal read from TIR every 30 ms

Luckily, cavity power is also reflected in event rates ...

HAPPEX-II data (2004-2005) show state misidentification in Saclay
DAQ, but on a much smaller level
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Comparison with Møller Data

The Compton polarimeter (γe− → γe− scattering) and Møller
polarimeter (e−e− → e−e− scattering) both measure the electron
beam polarization Pe

The Compton asymmetry should be directly proportional to the
Møller-measured polarization at each beam energy Ee
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Detector Response Function

Calculating 〈Al〉 requires the detector response function for GSO

Model GSO response with
GEANT4

Tests at HIγS in 20-40
MeV range (October
2008)

Work on detector response
continues (Matthew
Oborski)
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Photomultiplier Tube Linearity

Detector response function is also affected by nonlinearities in the
PMT/base

Gain shifts and other nonlinearities observed during running

Megan Friend and Brian Quinn have worked on characterizing PMT
nonlinearities using a pulser system
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Future Work

Report polarization histories for each d2
n configuration

Translate Compton asymmetries to beam polarization

Finish Monte Carlo work for detector response function
Include analytical description of PMT nonlinearity
Compute analyzing power for Compton detector

Calibrate Compton data

Improve asymmetry extraction from Saclay DAQ
Compare both sets of Compton results to each other
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