MOLLER Spectrometer Update

Juliette M. Mammei

Outline

- Previous recommendations
- Sensitivity study results
- Magnetic force results failure scenario
- Power deposited on coils
- Upstream Torus
- Collimators
- Shielding

Recommendations from last meeting

Liked the larger conductor size, water-cooling hole, and simpler design (fewer out of plane bends)

- Water cooling needs to be addressed (extra chiller, more LCW)
- Power supply think about how the will hybrid be powered (we have)
- Coil construction
 - No splicing
 - Deep pockets for brazing water connections
 - Support it to be moved easily (assumed in the design)
 - Will be labor intensive and time consuming (we assume this)
 - Multiple magnets (not enough space for separate supports and water/electrical connections)
- Optics
 - Target windows (part of background, will be included in final optimization)
 - Optimized (not 100% yet)
- Forces
 - Iron may reduce the forces (not high priority right now not a huge win)
 - Coil failure scenarios (provided to Jason)
- Cost analysis
 - Design all parameters of magnet system
 - Compare costs for long coils vs. multiple short coils (including tooling). Consider capital costs and operating expenses.

- The Physics
 - Search for *physics beyond the Standard Model*
 - Interference of Z boson with single photon in Møller scattering
 - Measure the weak charge of the electron and $sin^2\theta_W$
 - Sensitivity comparable to the two high energy collider measurements
- The Experiment
 - High rate, small backgrounds 150 GHz, 8% backgrounds
 - Novel toroid design, with multiple current returns
 - Full azimuthal acceptance, scattering angles from 5.5-19 mrads, 2.5-8.5 GeV
 - 150cm (5 kW) target, detectors 28m downstream

The Experiment

28 m

Hybrid Torus

Upstream Torus

Target

Collimators

Scattering Chamber

Main detectors: 224 quartz bars with air light guides

Detector Array

Additional detectors (systematics and background):

2nd moller ring pion detectors tracking GEMs

Spectrometer Meetings

- Director's Review January 2010
- Advisory Group Meeting August 2010
- Collaboration Meeting December 2010
- Supergroup Meeting June 2012
- Collaboration Meeting *September 2012*
- Collaboration Meeting June 2013
- Advisory Group Meeting October 2013
- Collaboration Meeting May 2014
- DOE Science Review *September 2014*
- Collaboration Meeting January 2015
- Advisory Group Meeting July 2015
- JLAB Technical Review *September 2015??*

Looking downstream

up (z0 = -75 cm) 5.5 to 15 mradsmiddle (z0 = 0 cm) 6.0 to 17 mradsdown (z0 = 75 cm) 6.5 to 19 mrads Tracks colored by theta from purple to red (low to high)

Range of phi values

Tracks in GEANT4

Moller and ep electrons (GHz/cm²)

12

Layout

up (z0 = -75 cm) 5.5 and 15 mradsmiddle (z0 = 0 cm) 6.0 and 17 mradsdown (z0 = 75 cm) 6.5 and 19 mradsphi=0 only

green – eps blue - mollers

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only, near magnet

green – eps blue - mollers

Field representations

Radial plot, middle of open sector

26/Aug/2013 10:14:31

Z=1375, φ = 0

Radial plot, edge of open sector

26/Aug/2013 11:40:52

Around Azimuth

Rate vs. Radial Offsets

Preliminary Results

Position sensitivity in cm		Asymmetry (δA = 0.1 ppb)			
		Large Range	Small Range	Old	
		(higher order fit)	(linear fit)	(over linear range)	
	Z (cm)	-9.73	-8.89	-9.24	
	R (cm)	0.28	0.29	0.29	
over (half) radius	T (cm)	-6.37	19.11	-12.89	
	Roll (cm)	0.62	-1.37	1.59	
over half length	Yaw (cm)	9.73	2.90	9.72	
	Pitch (cm)	-4.46	-3.29	-4.58	

- Need to look at the effect of tracking algorithm with incorrect maps
- Need to consider the effect of multiple types of offsets in one coil, and multiple coils having offsets

Forces

Now CLIPD2 = 0 Force on herizontal soil (lbs)					Total	-2941.75	0.00	36.88		
	New COR	$D_2 = 0$ Force (-					
Segment	Cond. #	Length (cm)	Fx	Fy	Fz			F _x (lbs)	F _v (lbs)	F, (lbs)
A	4, 5, 6		-1575.89	-427.59	27.04	q	Inner	-5434.03	-7.24E-08	1.05E+02
В	7, 8, 9		-1120.77	-122.59	69.43		Outer	2636.429	-2.80E-08	-84 7468
C	10, 11, 12		-0.96	-5.33	65.79	U	returns	-144,153	1.71E-10	16.45164
D	13, 14, 15		912.52	-72.03	-58.37		recurns	-2941 75	0.00	36.88
E	16, 17, 18		87.05	-13.57	31.72			-2541.75	0.00	50.00
F	19, 20, 21		60.35	-12.61	23.20					
G	22, 23, 24		370.23	-82.52	-12.93		Total	-1883.92	0.00	-9.34
Н	25, 26, 27		200.05	-42.92	-34.45					
IJ	28, 29		-13.54	-11.31	-84.93	≥		F _x (lbs)	F _v (lbs)	F _z (lbs)
						Ū.	Inner	-4111.14	0.00	119.65
К	30		153.81	-29.25	-6.51	Ζ	Outer	2013.15	0.00	-30.87
LM	31		-1.07	-0.75	-11.76		returns	214.07	0.00	-98.13
								-1883.92	0.00	-9.34
N	32		87.13	-16.77	-3.69					
0	33		-0.60	-0.42	-6.03					
Q	34		51.79	-10.17	-1.51	u_	Total	-1398.25	-1010.75	-9.66
	Salid vie	#_7.coils				f				
RS	35	8	-1.43	-2.19	-8.24	0		F _x (lbs)	F _y (lbs)	F _z (lbs)
							Inner	-3303.59	-710.91	98.03
Х		4	-106.67	-28.75	0.27) O	Outer	1722.88	-236.92	-28.08
Υ	2		-181.23	-48.18	0.47		returns	182.45	-62.92	-79.61
- Z - 1		-20 -30 -40	-319.04	-83.80	0.82			-1398.25	-1010.75	-9.66

L

Spectrometer and shielding

Collimators are designed to provide a 2-bounce system for photons to detectors

Some will be moveable, all must be precisely aligned; some will be water-cooled

We will require local shielding (mostly due to neutron production) and radiation monitoring

Simulations

- Optimize collimator acceptances
- Design local shielding
- Reduce radiative power deposited on collimators and coils to acceptable levels

(for 85 μA)			
Collimator	Total Incident	Only e-	Only e+	Only y
	(W)	(W)	(W)	(W)
1	3238.5	2141.5	996.7	97.8
2	1757.5	1195.3	501.9	58.5
3	1985.4	1331.7	588.4	63.5
4	229.0	156.1	65.1	7.7
5	34.7	23.0	10.5	1.1

Dominated by electrons

US Magnet

		¥	
Туре	E Rnge	Total Power	Total Flux
	(MeV)	(W/uA)	(per uA)
	E<10	0.116	3.22E+11
Total	0 <e<100< td=""><td>0.373</td><td>7.56E+10</td></e<100<>	0.373	7.56E+10
	100 <e< td=""><td>1.534</td><td>3.07E+10</td></e<>	1.534	3.07E+10

Dominated by photons

DS Magnet

Гуре	E Rnge	Total Power	Total Flux
	(MeV)	(W/uA)	(per uA)
	E<10	0.034	7.34E+10
Total	0 <e<100< td=""><td>0.173</td><td>3.22E+10</td></e<100<>	0.173	3.22E+10
	100 <e< td=""><td>0.501</td><td>1.03E+10</td></e<>	0.501	1.03E+10

Upstream Torus

Upstream torus studies

- Physics
 - Included in optics studies
 - Radiative power deposited (mostly upstream end)
 - Sensitivity studies
 - Effect of fringe fields in beampipe
- Engineering
 - Water cooling and power connections
 - Manufacturing procedure
 - Support structure

Extra Slides

Large Phase Space for Design

- I. Large phase space of possible changes
 - A. Field (strength, coil position and profile)
 - B. Collimator location, orientation, size
 - C. Choice of Primary collimator
 - D. Detector location, orientation, size
- II. Large phase space of relevant properties
 - A. Moller rate and asymmetry
 - B. Elastic ep rate and asymmetry
 - C. Inelastic rate and asymmetry
 - D. Transverse asymmetry
 - E. Neutral/other background rates/asymmetries
 - F. Ability to measure backgrounds (the uncertainty is what's important)
 - 1. Separation between Moller and ep peaks
 - 2. Profile of inelastics in the various regions
 - 3. Degree of cancellation of transverse (F/B rate, detector symmetry)
 - 4. Time to measure asymmetry of backgrounds (not just rate)
 - G. Beam Properties (location of primary collimator)

Spectrometer Design

Work since original proposal

- First Engineering Review
 - Verified the proposal map in TOSCA
 - Created an actual conductor layout with acceptable optics
- Since the engineering review
 - New conductor layout, take into account keep-out zones
 - Water cooling more feasible
 - Preliminary look at the magnetic forces
- Interfacing with engineers

Purchase of a new machine and TOSCA license for use at University of Manitoba

- \circ JLab engineers estimate that pressure head is not an issue
- New conductor layout with larger water cooling hole
- Coil carrier and support structure design
- Working toward a "cost-able" design for DOE review soon

Proposal Model to TOSCA model

Home built code using a Biot-Savart calculation

Optimized the amount of current in various segments (final design had 4 current returns)

Integrated along lines of current, without taking into account finite conductor size

"Coils-only" Biot-Savart calculation

Verified proposal model

Created a first version with actual coil layout

Created second version with larger water cooling hole and nicer profile; obeyed keep-out zones ry Group Meeting

Concept 2 – Post-review

Current density not an issue, but affects cooling

Larger conductor

- Larger water-cooling hole
- Fewer connections
- Less chance of developing a plug

New layout

- $_{\circ}$ Use single power supply
- Keep-out zones/tolerances
- $_{\odot}$ Need to think about supports
- $_{\rm O}$ Study magnetic forces

➤Continued simulation effort

- Consider sensitivities
- Re-design collimation
- \circ Power of incident radiation

up (z0 =-75 cm) 5.5 to 15 mrads middle (z0 =0 cm) 6.0 to 17 mrads down (z0 =75 cm) 6.5 to 19 mrads

Tracks colored by theta from

phi=0 only

Magnet Advisory Group Meeting purple to red (low to high)

July 23, 2015

(z0 =-75 cm) 5.5 to 15 mrads up middle (z0 =0 cm) 6.0 to 17 mrads down (z0 = 75 cm) 6.5 to 19 mrads

Tracks colored by theta from

phi=0 only, near magnet Magnet Advisory Group Meeting purple to red (low to high)

July 23, 2015

up (z0 =-75 cm) 5.5 to 15 mrads middle (z0 =0 cm) 6.0 to 17 mrads down (z0 =75 cm) 6.5 to 19 mrads

Tracks colored by theta from

phi = 0, Mollers only

Magnet Advisory Group Meeting purple to red (low to high)

July 23, 2015

up (z0 =-75 cm) 5.5 to 15 mrads middle (z0 =0 cm) 6.0 to 17 mrads down (z0 =75 cm) 6.5 to 19 mrads

Tracks colored by theta from

phi=0 only, near magnet, mollers Aphly Group Meeting purple to red (low to high)

July 23, 2015

up (z0 = -75 cm) 5.5 and 15 mradsmiddle (z0 = 0 cm) 6.0 and 17 mradsdown (z0 = 75 cm) 6.5 and 19 mradsphi=0 only

green – eps blue - mollers

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only, near magnet

green – eps blue - mollers

Tweaking the Optics

Magnet Advisory Group Meeting July 23, 2015

Tracks from center of target, phi =0 only 6.0 and 17 mrads

Moller and elastic ep electrons at z=2800.0cm

Rate vs. Radial Offsets

July 23, 2015

Rate vs. Radial Offsets

Rate vs. Radial Offsets

Moller Asymmetry (0.935m<r<1.1m) for T offsets

Determining the slope

Mean Asymmetry vs Roll Offsets

Smaller range only may give misleading sensitivity...

Need more statistics with smaller range? Zero-offset study

"Systematic" from TOSCA maps or GEANT4 simulation?

"Zero Offset" Study

- Check that the statistical uncertainties we are calculating are correct
- Estimate a "simulation systematic" uncertainty
 Add that in quadrature to the slope plots
- Extract an uncertainty on the sensitivity

"Zero Offset" Study

Summary

- Results show order ~3 mm sensitivities (not sub-mm)
- Need to look at the effect of tracking algorithm with incorrect maps
- Need to consider the effect of multiple types of offsets in one coil, and multiple coils having offsets
- What is the most important parameter what is it that will determine the sensitivity
 - A background correction done incorrectly?
 - The mean asymmetry, as I've assumed here?
 - The mean θ_{lab} , which will go into the extraction of $\sin^2 \theta_W$?
 - A physical interference with the scattered electron envelope?

GEANT4

- Moved to GDML geometry description
- Defined hybrid and upstream toroids
 - Parameterized in same way as the TOSCA models

GEANT4 - Collimators

GEANT4 – Acceptance definition

Magnet Advisory Group Meeting July 23, 2015

Comparison of GEANT4 Simulations

Comparison of GEANT4 Simulations

Current Version of the Hybrid and Upstream

Ongoing/Future Work

- Ongoing/Future work
 - Optimization of the optics
 - Magnetic force studies
 - Sensitivity studies
 - Collimator optimization
 - Design of the water-cooling and supports
 - Design of electrical connections
 - Look at optics for 3 coils

Collimator Study

Look at focus for different

- Sectors
- Parts of target

Useful for optics tweaks and collimator optimization

Ideally the strips would be vertical in these (actually theta vs. radius) plots

see <u>elog 200</u>

Water-cooling and supports

44

Verified by MIT engineers
– cooling could be accomplished in concept 2 with 4 turns per loop Still 38 connections per coil!

Suggestion from engineering review: Put the magnets *inside* the vacuum volume

30

Petal beampipe concept

- New option
- Channel for ee electrons

Collimator 5

- New
- Shields coils from small r photons

Central beampipe

- 3mm thick
- Invisible to target

GEANT4 – Upstream Torus

GEANT4

Direct Comparison of Fields

Complicated field because of multiple current returns

Comparison of field values

Red – proposal model Black – TOSCA model

By (left) or Bx (right) vs. z in 5° bins in phi

Proposal Model

OD (cm)	A _{cond} (cm²)	Total # Wires				Current (A)				Current	J
		Х	Y	Z	А	Х	Y	Z	A	per wire	(A/cm ²)
Proposal						7748	10627	16859	29160		1100
0.4115	0.1248	40	54	86	146	7989	10785	17176	29160	200	1600
0.4620	0.1568	32	44	70	120	7776	10692	17010	29160	243	1550
0.5189	0.1978	26	36	56	94	8066	11168	17372	29160	310	1568
0.5827	0.2476	20	28	40	76	7680	10752	15360	29184	384	1551

Actual Conductor Layout

Choose constraints

- Choose (standard) conductor size/layout minimizes current density
- Try to use "double pancakes"; as flat as possible
- Minimum bend radius 5x conductor OD
- Fit within radial, angular acceptances (360°/7 and <360°/14 at larger radius)
- Total current in each inner "cylinder" same as proposal model
- Take into account water cooling hole, insulation
- Need to consider epoxy backfill and aluminum plates/ other supports?

Radial extent depends on upstream torus and upstream parts of hybrid!!

Conductor Size

Need to "fill" the available space at low radius

Trade-off between more insulation for smaller conductor and losing space at the "edges" with larger conductor

Also need to fit all the conductor in a particular radius at a given z location

Much bigger conductors have even higher current densities because of "edge" effects

Conductor Size

Need to "fill" the available space at low radius

Trade-off between more insulation for smaller conductor and losing space at the "edges" with larger conductor

Also need to fit all the conductor in a particular radius at a given z location

Much bigger conductors have even higher current densities because of "edge" effects

Conductor Size

Need to "fill" the available space at low radius

Trade-off between more insulation for smaller • conductor and losing space at the "edges" with larger conductor

Also need to fit all the conductor in a particular radius at a given z location

Much bigger conductors have even higher current densities because of "edge" effects

Actual conductor layout

Actual conductor layout, exploded

Blocky Model superimposed

Blocky Actual Layout, with Actual Layout

Keep Out Zones

Keep Out Zones

Keep Out Zones

Interferences

Interferences

Moller and elastic ep electrons at z=2800.0cm

Moller and elastic ep electrons

Moller and elastic ep electrons

Х

Moller and elastic ep electrons at z=2800.0cm

 \sim

Outline

- Meshed with no iron for comparison
- Used Willy's conceptual design for iron pieces
 - Not optimized in any way
 - Used thin and thick pieces
- Compared fields (BMOD and BR)
- Compared tracks for no iron and thick iron

Note: op3 file names are:

no_iron_in_coils_test_ver2.op3 (smaller mesh size)
iron_in_coils_ver3.op3 (thin)
iron_in_coils_ver4.op3 (thick)

No iron, coils only

No iron w/ mesh

Field on a line, middle of open sector

BMOD z=1375 cm, y= 0 cm , 0 < x < -40 cm

Model body in mesh

Iron design

30

Thin Iron w/ mesh

Thick Iron w/ mesh

Giant blocks of iron

No iron w/ mesh

Thin Iron w/ mesh

Thick Iron w/ mesh

Giant blocks of iron

Vector plots

BMOD

27/Aug/2013 09:50:4				~ /			N/
				Y			XIIIIIIIII
Map contours: BMOD			t i i i i i i				
- 1.500000E+004							
				6 4 4 4 4	* * * * * *		
- 1.400000E+004			(e a a a a a		* * * * * * * * * * *
				4 4 4 4 4	6 4 4 4 4 4		
				11111			* * * * * * * * * * *
				11111	11111		1. 1 1 1 1 1 1 1 1 1
- 1.200000E+004				4			4
- 1.000000E+004				6 4 4 4 4			4
	A A A A A A						
							N X X X X X X X X X X
H- 8 000000E+003	24 00				10 10		14 10 10
	24 4 4 4 4	20 18		141	12, 10		14 12 10
	24 4 4 4 4 4	· · · · · · · · · · · · · ·					
		, , 20 , , , 12 ', ', ', ', ', ', ', ',	<u>, , , , , , , , , , , , , , , , , , , </u>			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.0000005.000		1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- 6.000000E+003	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	<u>, , 20, , , , 1</u> , , , , , , , , , , , , , , , , , , ,	 			<u>1</u> <u>1</u> <u>2</u> <u>1</u> <u>1</u> <u>2</u> <u>1</u> <u>1</u> <u>2</u> <u>1</u>	
6.000000E+003	$\begin{array}{c} 2^{4} & 1 & 1 & 2^{2} & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 &$	1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , <u>,</u> , , , , , , , , , , , , , , , , , , ,			1 1 24 1 4 22 1 4 20 1 4 18 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , ,			1 1 24 1 4 22 1 4 20 1 4 18 1 16 1<	
6.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2			1 24 1 22 1 20 1 18 16 16 1 1 1 1 1 1 1 1 1 1 1 16 1 <t< th=""><th>14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></t<>	14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 24 1 22 1 20 1 18 1 16 1<	14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 24 1 22 1 20 1 18 1 16 1<	14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.000000E+003 4.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
6.000000E+003 4.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 24 1 1 20 1 1 15 1 16 1 </th <th></th>	
6.000000E+003 4.000000E+003 2.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 24 1 1 20 1 1 15 1 16 1 </th <th>14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th>	14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.000000E+003 4.000000E+003 2.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 1 24 1 1 22 1 1 20 1 1 15 1 1 15 1<	
6.000000E+003 4.000000E+003 2.000000E+003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						r^{6}
 6.000000E+003 4.000000E+003 2.000000E+003 1.500000E+002 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 24 1 1 22 1 1 20 1 1 15 1 16 1 16 1 1 16 1<	r^{-6}
 6.000000E+003 4.000000E+003 2.000000E+003 1.500000E+002 Integral = 5.126432E+002 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1
 6.000000E+003 4.000000E+003 2.000000E+003 1.500000E+002 Integral = 5.126432E+0 	24 x 4 x 22 x 4 x 4 x 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						14 12 10 1 1 1 1 1 1 1 1 1 1 1 1 1

Middle of open sector

Middle of open sector

Edge of open sector

Edge of open sector

26/Aug/2013 13:23:53

Z=1375, r = 13.5 cm

26/Aug/2013 12:31:38

Z=1375, r = 13.5 cm

26/Aug/2013 12:52:38

26/Aug/2013 12:50:42

foller and elastic ep electrons at z=2800.0cm

Moller and elastic ep electrons at z=2800.0cm

Х

loller and elastic ep electrons at z=2800.0cm

Moller and elastic ep electrons at z=2800.0cm

Ioller and elastic ep electrons at z=2800.0cm

Moller and elastic ep electrons at z=2800.0cm

foller and elastic ep electrons at z=2800.0cm

Summary

No optimization of the iron was done

According to this preliminary work, $\int B \cdot dl$ is 2% greater for the thick iron

1.11 T·m \rightarrow 1.13T · m

Lowest tracks radial position at detector plane increased 2 cm (compared to 90 cm)

Do NOT see a dramatic increase in the quality of the focus or size of the field

Radial focus may be a little better for transition and closed sectors