A Precision Measurement of d_2^n : A Probe of the Color Force On behalf of the d2n/E06014 Collaboration

Graduate Students: Matthew Posik¹ David Flay ¹ Diana Parno (graduated) ²

> ¹Temple University, Philadelphia,PA ^{2}CMU

1 / 22

Matthew Posik (Temple University)

Lepton-Hadron Scattering

Lepton-Hadron scattering interaction is given by $l_{\mu,\nu}W^{\mu,\nu}$

- $l_{\mu,\nu}$ is the lepton tensor (describes a point particle i.e. an electron)
- $W^{\mu,\nu}$ is the hadron tensor (describes a composite particle i.e. a neutron)

The Hadron tensor can be decomposed as

$$W^{\mu,\nu} = W^{\mu,\nu}_{unpol} + W^{\mu,\nu}_{pol}$$

- Unpolarized term has spin independent F_1 and F_2 structure functions
- polarized term has spin dependent g_1 and g_2 structure functions

Deep Inelastic Scattering (DIS)

$$\begin{array}{l} Q^2 &= -q^2 \ (\text{Momentum transfer}) \\ q^2 &= k - k' \\ x &= \frac{Q^2}{2P \cdot q} \ (\text{Momentum fraction of the quark}) \\ \Psi &= \sqrt{M^2 + 2M\nu - Q^2} \ (\text{Invariant mass}) \\ \nu &= E' - E \ (\text{Energy transfer}) \end{array}$$

Probing Quark-Gluon Dynamics in the Nucleon

d_2^n gives access to quark-gluon correlations

$$d_{2}^{n} = \int_{0}^{1} x^{2} \left(2g_{1} \left(x, Q^{2} \right) + 3g_{2} \left(x, Q^{2} \right) \right) dx$$

- What is d_2^n ?
 - Average Lorentz color transverse force acting on a quark immediately after being struck by a virtual photon (M. Burkardt hep-ph/0905.4079v1)

Jefferson Lab

October 25, 2012

4 / 22

• d_2^n is dominated by large x contributions

Matthew Posik (Temple University)

Physics Motivation

What is d_2^n ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Matthew Posik (Temple University)

E06-014: October 2012 DNP

October 25, 2012 5 / 22

3

What is d_2^n ?

So d_2^n is...

• A measure of quark-gluon correlations

Matthew Posik (Temple University)

What is d_2^n ?

- A measure of quark-gluon correlations
- A force felt between the quark and gluon due to a virtual photon knocking a quark out of the nucleon

E06-014: October 2012 DNP

Jefferson Lab

Image: A matrix and a matrix

Experimental Set-Up

Matthew Posik (Temple University)

E06-014: October 2012 DNP

October 25, 2012 7 / 22

-

 d_2^n can be measured through the unpolarized cross section and the asymmetries

$$A_{\perp} = \frac{\sigma^{\downarrow\uparrow\uparrow} - \sigma^{\uparrow\uparrow\uparrow}}{2\sigma_0}, A_{\parallel} = \frac{\sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}}{2\sigma_0}$$

$$d_2^n = \int_0^1 dx \left(\frac{MQ^2}{4\alpha^2} \frac{x^2 y^2 \sigma_0}{(1-y)(2-y)} \right) \left[\left(3 \frac{1+(1-y)\cos\theta}{(1-y)} + \frac{4}{y} \tan\frac{\theta}{2} \right) A_\perp + \left(\frac{4}{y} - 3 \right) A_\parallel \right]$$

- \downarrow , \uparrow = -, + electron helicities
- $\uparrow, \Rightarrow =$ down stream, towards BigBite detector

 Jefferson Lab
 Image: Constraint of Constraintof Constraint of Constraint of Constraint of Constraint

Preliminary Electron Asymmetries

Figure: Preliminary electron asymmetries in the DIS region.

Preliminary Electron Asymmetries

Figure: Preliminary electron asymmetries in the DIS and resonance regions. Jeff

Jefferson Lab

Matthew Posik (Temple University)

E06-014: October 2012 DNP

October 25, 2012 10 / 22

T

э

Cross Sections

Matthew Posik (Temple University)

Preliminary g_1 on 3 He

E06-014: October 2012 DNP

 < ≥ > < ≥ > ≤
 > ≤
 > ○ < ○</td>

 October 25, 2012
 12 / 22

< 17 ▶

T

Preliminary g₂ on ³He

Current d₂ Uncertainty

Current statistical uncertainty on $d_2^{^3He}$ at 5.89 GeV $\approx 8\times 10^{-4}~({\rm DIS}+{\rm Resonance})$

Matthew Posik (Temple University)

E06-014: October 2012 DNP

October 25, 2012 14 / 22

Jefferson Lab

Summary

- Exploit transverse spin interactions through g₂ structure function, to study higher twist effects
- Gain insight of Lorentz color force inside the neutron through the matrix element dⁿ₂
- Provide a test to lattice QCD
- Born Cross-sections are finalized
- Radiative corrections to asymmetries are underway
- BigBite simulations also well underway

 Thanks to ...

- The spokes people: X. Jiang, S. Choi, B. Sawatzky and Z.-E. Meziani
- The primary analysis team: D. Flay, G. Franklin, V. Mamyan, Z.-E. Meziani, D. Parno, M. Posik, B. Sawatzky and Y. Zhang
- Hall A Collaboration
- Transversity Collaboration
- *d*ⁿ₂ Collaboration
- This work is supported by: DOE Award #DE-FG02-94ER40844

Matthew Posik (Temple University)

E06-014: October 2012 DNP

October 25, 2012

16 / 22

Pion Asymmetry Contamination

- Pion asymmetries are sizable
- But pion rejection was good $\approx 10^5$
- Leads to negligible pion contamination

Matthew Posik (Temple University)

E06-014: October 2012 DNP

Jefferson Lab

October 25, 2012

17 / 22

< < p>< < p>

Positron to Electron Bend-Up Ratio

5.89 GeV Corrected Bend-Up Positron to Bend-Up Electron

Figure: Ratio of bend-up positrons to bend-up electrons obtained by using κ factor the second sec

E06-014: October 2012 DNP

3.0

< 🗇 🕨

T

Bend-Up and Bend-Down Positron Raw Asymmetries

Figure: Comparison between bend-up and bend-down positron asymmetries.

Bend-Down Positron Asymmetries

Figure: 4.74 and 5.89 GeV longitudinal and transverse positron asymmetries.

Matthew Posik (Temple University)

E06-014: October 2012 DNP

æ October 25, 2012 20 / 22

- ∢ ≣ →

Image: A match a ma

Target Ladder

Target Setup

