

SBS DAQ

E. Cisbani

INFN Rome &

Italian Institute of Health

SBS DOE Review

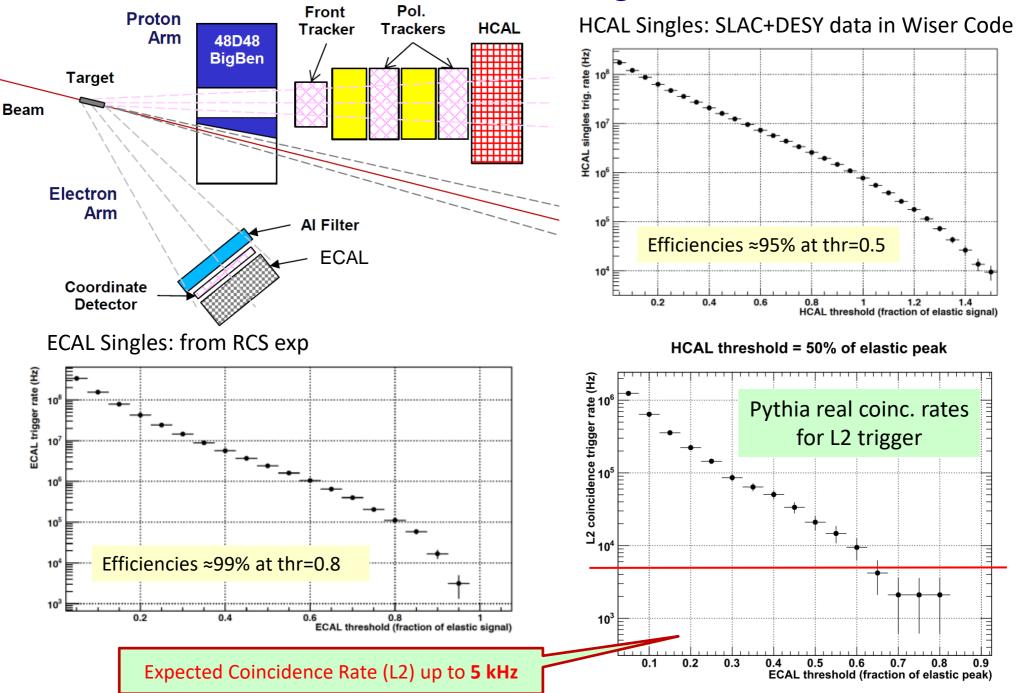
7/Nov/2016 - Georgetown

Contributions from:

- Dasuni Adikamar
- Alexandre Camsonne
- Mark Jones
- Paolo Musico
- Andrew Puckett

• ...

Outline


- GEP Event Rate
- Trigger and DAQ
- Fastbus for SBS: performance
- GEM readout

Overview at SBS Meeting 20/Oct/2016 presentation is in progress ...

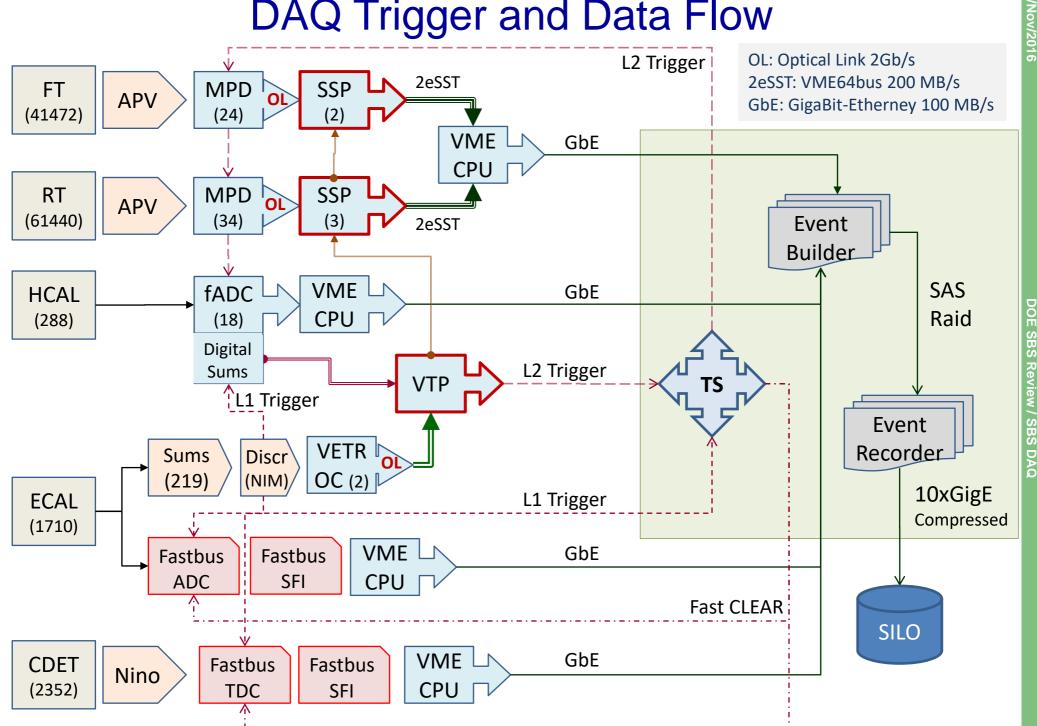
Main guidelines

- Reuse available equipment (Fastbus) to reduce cost
- Exploit JLab CODA3 VME hardware largely based on powerful FPGA
- >100k GEM channels need processing in hardware

GEp - Most Demanding DAQ Rate

DAQ Concepts

- Hybrid Fastbus & Pipelined VME+Optical Fiber Electronics
- Level 1 Trigger
 - originated by the ECAL electron arm (~200 kHz rate)
 - latency ~100 ns (analog sum and discrimination)
 - GATE for Fastbus and non-pipelined components (ECAL)


Level 2 Trigger

 originated by electron ECAL & proton HCAL & FPGA-based coincidence logic using elastic e-p angular constraints

⇒ ≤5 *kHz DAQ rate*

- latency \leq 1.8 µs (formation 0.8 µs max + fast clear timeout ~1 µs)
- Fastbus & VME Fast CLEAR after L2 timeout ⇒ ≈10% electronics dead time

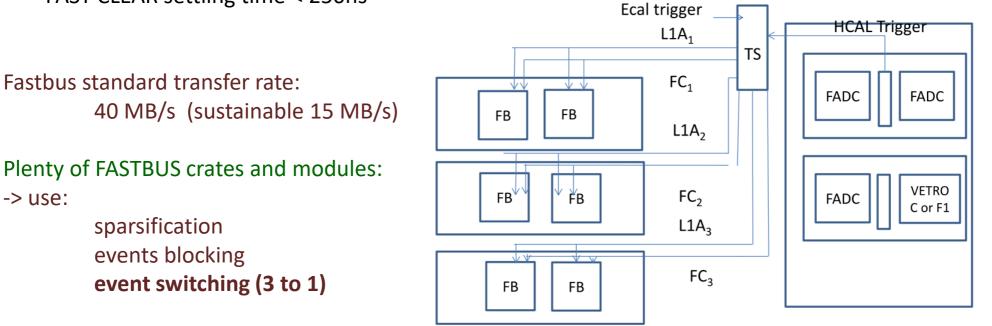
DAQ Trigger and Data Flow

Many details aready implemented and/or tested. Overall picture finalized; small scale test in progress

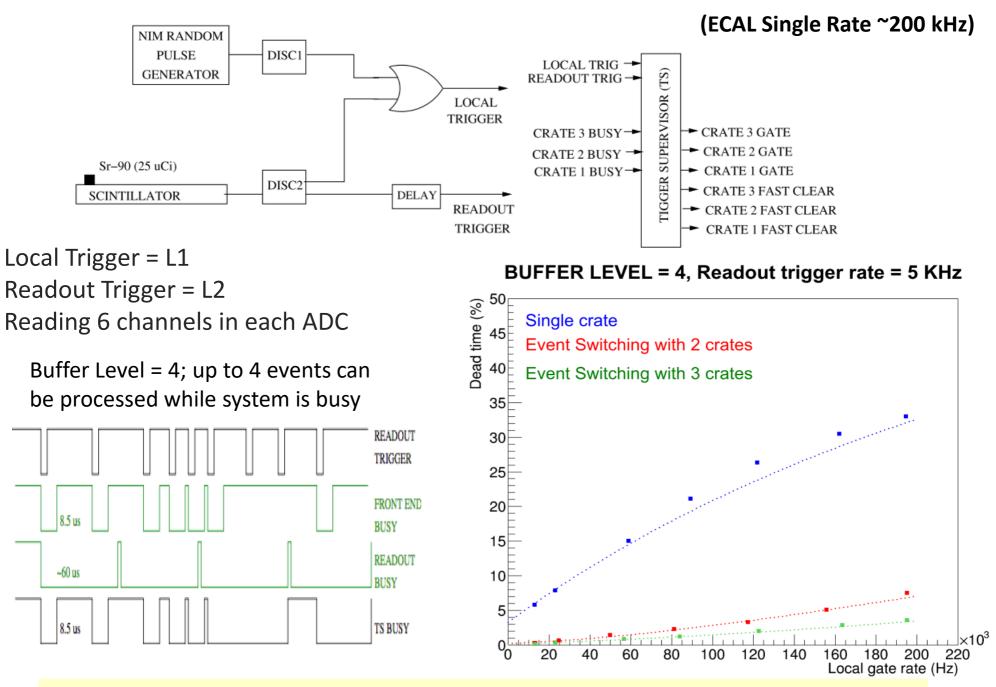
FASTBUS for ECAL and CDET

Struck Fastbus Interface (SFI) is the Fastbus Master (18 available at JLab)

- Allows control the Fastbus modules through any VME CPU (Intel or old vxworks)
- Has slot for standard JLab Trigger Interface Module

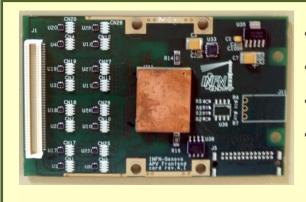

New TI's for all ECAL e CDET Fastbus crates

Amplitude: 64 channel Lecroy ADC 1881M (113 available at JLab)


- $9\mu s$ encoding time in 12 bit resolution and $12\mu s$ in 13 bit resolution.
- use the FAST CLEAR feature: module is ready to accept another event after 2µs.

Time: 96 channel Lecroy TDC 1877s (236 available at JLab)

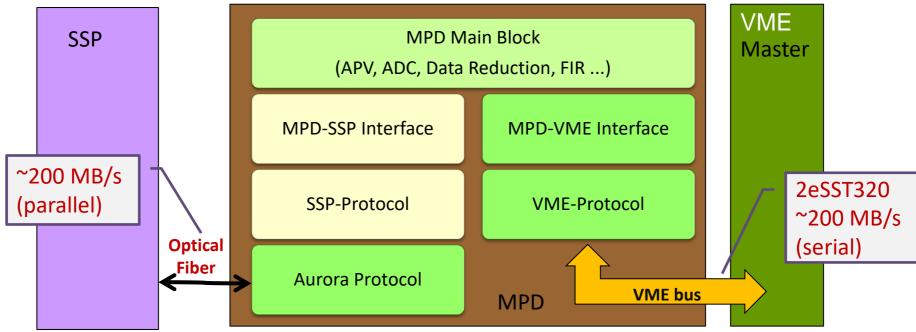
- Built-in Data Zero Suppression and Data Compaction (sparsification)
- Capable of multihit with an event buffer of 8 events.
- Encoding time 1.7 μs plus 50 ns per hit per channel giving a maximum encoding time of 78 $\mu s.$
- FAST CLEAR settling time < 250ns


ECAL/Fastbus – Event Switching Dead Time Study

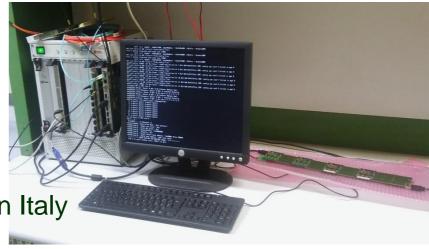
Fastbus tested readout guarantees deadtime well below 10% at maximum expected rate

/Nov/2016

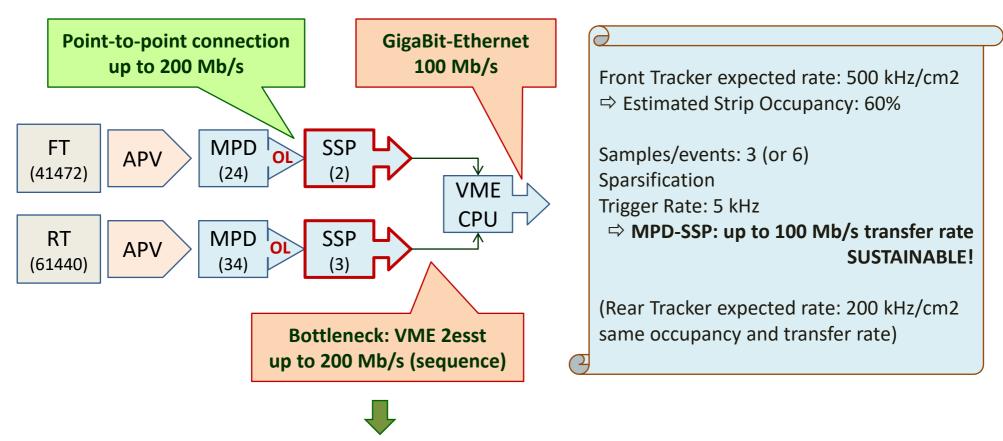
GEM – Readout Electronics



- 128 analog ch / APV25 ASIC
- 3.4 µs trigger latency (analog pipeline)
- Capable of sampling signal at 40 MHz
- Multiplexed analog output (100 kHz readout rate)
- Up to 16 APV25 cards (2048 chs) on a single MPD (parallel readout)
- Altera Arriga GX FPGA / RAM: DDR2 (128 MB)
- Optical Fiber Link interface (Aurora ~2 Gb/s peak)
- 110 MHz system clock and Front panel coax clock
- Used HDMI-A for analog and digital signals
- VME/32, VME64, VME64-VXS compliant (up to 200 MB/s peak)
- 4 high speed line on the VXS available for data transfer
- Firmware v. 4.0 (74% resources):
 - Finite-Impulse-Response Filter (16 parameters)
 - Zero Suppression (sparse readout)
 - Common mode and pedestal subtraction
 - Remore reconfiguration
 - ~2 ns trigger time resolution
 - VME / Optical Fiber simultaneous implementation

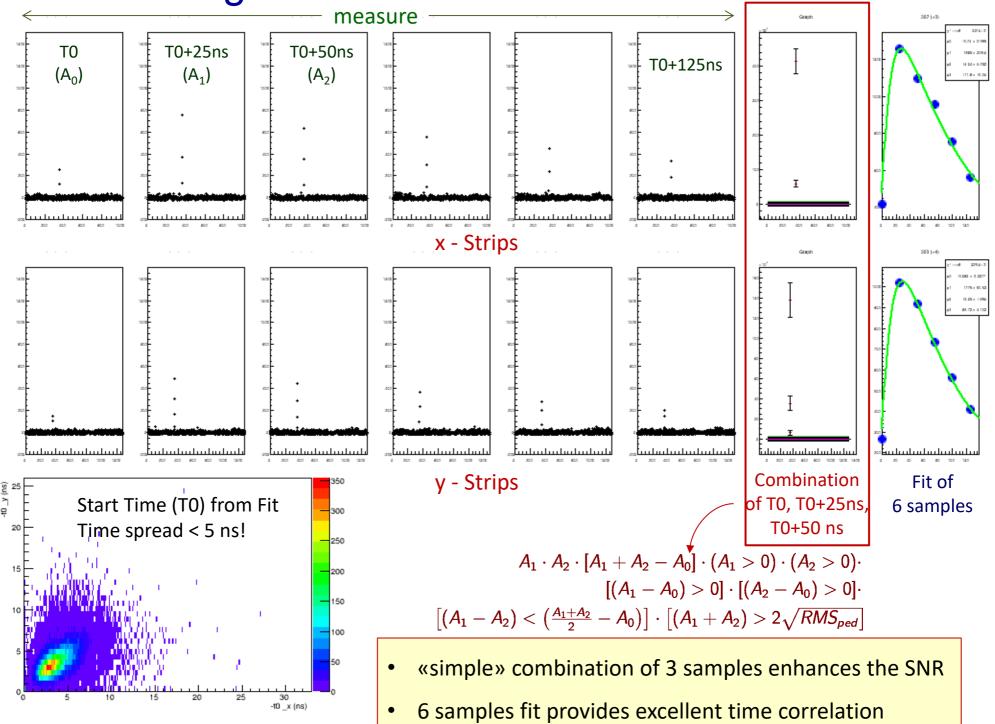

	Channels	APV25	MPDs
Front Tracker	41472	324	24
Rear Tracker	61440	480	34

MPD Status (version 4.0)



- All VME cycles tested (using a STRUCK SIS-3104 controller) and in JLab/CODA DAQ except 2eSST
 - Measured data transfer speeds agree with simulations
 - 2eSST in JLab shows data misalignments
- Optical link MPD SSP:
 - MPD can be configured by SSP; data transfer still suffer some misalignments but all data words are present
- CODA system (Intel CPU + SSP) now running in Italy
 - deep test VME64x MPD SSP is in progress

Nov/2016

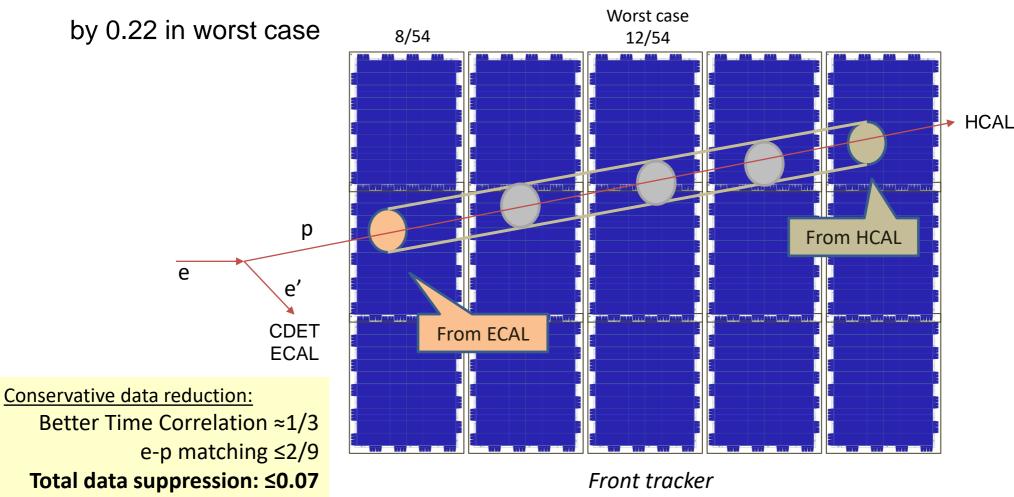

GEp: GEM data rate

Need data processing on SSP (and MPD) to reduce data by factor of ~10 (<30% dead time):

- Time-Correlation (signal width 250 ns can be reduced to less than 80 ns \rightarrow factor 3)
- e-p geometrical constraints (ECAL HCAL alignment \rightarrow factor 4.5)
- x/y clustering with charge/time correlation ... to be investigated

GEM Signal Deconvolution / 2014 Test Data

DOE SBS


Review / SBS DAQ

DOE SBS

SBS DAQ

GEM / geometrical e-p matching

- VTP has information on e-p geometrical matching by ECAL and HCAL
- VTP send a pattern to GEM-(MPD)SSP's (\approx 41 bytes * 5 kHz)
- (MPD)SSP filter APVs data streams according to geometrical matching (1
 - APV = 5 cm), e.g. 4 APV along each axis (20 cm x 20 cm) suppress FT data

DAQ: Work force (FTE)

	FTE	Coordination	VME DAQ	Fastbus	HCAL Trigger	GEM MPD	BigBite
A. Camsonne/JLab		X			Х	Х	
M. Jones/JLab	0.1			Х			
D. Adikaram/Hall A PostDoc	0.4			Х			
J. Gu/JLab	0.1			Х			
S. Malace/NSU PostDoc	0.4			Х			
B. Moffit/JLab	0.1		Х	Х		Х	
B. Raydo/JLab	0.2		Х		Х	Х	
S. Riordan/SBU						?	
D. Di/PhD Student	1.0					Х	
E. Cisbani/INFN Rome	0.2					Х	
P. Musico/INFN Genoa	0.2					Х	
E. McLelan				Х			X

DAQ: Short Term plan

- Parassitic test run during DVCS/GMp experiment
 - Small scale system running in Hall A
- GEM/MPD-SSP/CODA Integration
 - GEM CODA decoding under finalization
 - MPD-SSP optical link works: bug fixing busted by available system in Italy
- Algorithms
 - Ongoing study of GEM firmware data processing for time correlation and e-p matching

Summary

Trigger:

• Two Levels; exploiting powerful FPGA real-time processing to reduce readout rate

Fastbus:

• Tested: sparsification, event buffering and crate switching; dead time well below 10%

VME:

- FADC amplitudes and time information for HCAL
- MPD + Optical Link + SSP works, alignment bugs expected to be fixed soon
- "Smart" processing in MPD and/or SSP to reduce data by 1/10 addressed and candidate for solutions identified

JLab CODA3

hardware/software framework integration largely completed

backup

New TS Firmware

- New firmware implementing event switching in the TS up to 4 branches
- Inputs:
 - T1 Lvl 1 trigger, T2 Lvl2,
 - 4 busy inputs, 4 fast L1, 4 Fast Clear output
- A single TS for synchronization
- Single data stream
- Fully compatible with event blocking
- New TIs for Fastbus
- 250 MHz clock distribution on fiber : absolute timestamp and counters on the new TI (replace scalers)

VETROC

- VETROC : VXS Electron Trigger Read Out Controller
 - Logic input and output pipeline board up to 192 channels
 - Optical link and VXS port to communicate with other pipelined electronics
 - FPGA programmable logic
 - Will be used to input the ECAL sum to the trigger module for geometrical matching of ECAL and HCAL
 - Prototype being tested
 - 2 boards procured for SBS

VTP

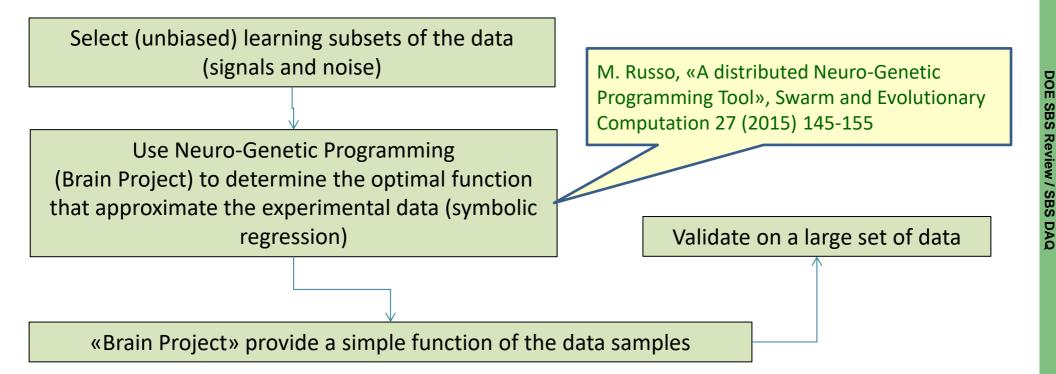
- VTP : VXS Trigger Processor
 - New generation of Trigger Processor
 - Larger FPGA than previous CTP and GTP
 - Will do HCAL clustering and geometrical matching with ECAL
 - Allow readout of modules through VXS increasing the bandwidth to 16x8 Gbit /s could be used for FADC fast readout or SSP if required
 - On board processor
 - Board received, firmware and interface are being implemented

7/Nov/2016

DAQ configuration for SBS GEP experiment

GEp Detectors	Channels	Readout	Type
<u>SBS Proton arm</u>			
Front tracker (6 GEM chambers)	41,472	APV25 MPD	VME
Rear tracker (10 GEM chambers)	61,440	APV25 MPD	VME
HCAL	288	FADC 250	VME
Electron arm			
ECAL	1710	ADCs 1881M	Fastbus
ECAL sums	219	TDCs 1877S	Fastbus
CDET	2688	TDCs 1877S	Fastbus

- Reuse the NIM and Fastbus equipment already available at JLab
- Lot's of channels on VME, Fiber Optics and new CODA

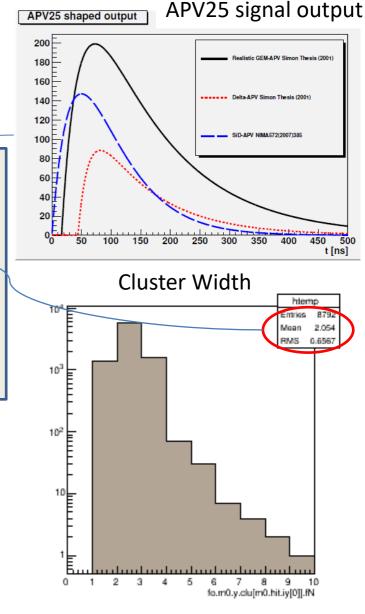

Additional components (modules):

- SSP: Sub-System Processor
- TS: Trigger Supervisor / TI: Trigger Interface
- VETROC: Trigger and Digital Readout
- VTP: VXS-Trigger Processor

APV Signal Analysis for Hit Discrimination in Firmware

GOAL: Find a simple and robust function (to be implemented in firmware) that can discriminate real hits from background

One PhD student (L. Re) workin on that in Catania/Italy Supervisioned by M. Russo


GEp: GEM Data rate

Tracker	Area of interest	Rate,	Strip pitch,	Strip occu-	Number of pseudo-	Number of
	for tracking, cm ²	kHz/cm ²	mm	pancy, %	Corresks per event	strip planes
First	0.20 x 18	400	0.4	13.5	1.652(10-2	12
Second	$2\pi \ 0.35^2$	130	1.6	7.4	8.7 × 10- Stj	m. ⁸
Third	π 4.8 ²	64	1.6	3.6	$5.2 imes 10^{-4}$	"ation
BigCal	$\pi \ 1.2^{2}$	173	1	2.4	$2.8 imes 10^{-2}$	2

- Expected Hits Rate (Front Tracker): ~ 500 kHz/cm2
- GEM signal width: \sim 250 ns
- Cluster width (MIP particles): 2.5 strips
 - Strip Occupancy: 60%
- Samples/Events: 3
- Bits/Sample = 24 = 12 ADC + 7 CH-APV + 5 CH-ADC
- Trigger rate: 5 kHz
 - MPD-SSP Transfer Rate: 45.2 MB/s (after sparsification)

200 kHz/cm2 Rear Tracker – same occupancy and transfer rate

SSP to DAQ-CPU data rate is 200 MB/s (VME bus)
→ require MPD/SSP=4 and SSP/VME64_crate=1
FEASIBLE BUT NOT EFFORDABLE!

We shall connect up to 12 MPD to a single SSP

⇒ need data processing on SSP (and MPD), reduce data by factor of ~10 (<30% dead time)

Better Time-Correlation, e-p geometrical constraints, x/y clustering with charge/time correlation

Data Storage

ov/2016

		Days	Data rate MB/s	Seconds	Total data TB	Double	LTO5 in \$	LTO6 in \$	LTO7 in \$
E12-12-09-019	GMN	25	1000	2160000	2160	4320	216000	129600	86400
E12-09-016	GEN	50	1000	4320000	4320	8640	432000	259200	172800
E12-07-109	GEP/G MP	45	1000	3888000	3888	7776	388800	233280	155520
E12-09-018	SIDIS	64	1000	5529600	5529.6	11059.2	552960	331776	221184
	Total	184		15897600	15897.6	31795.2	1589760	953856	635904
Actual days	Actual		Time in s						
	years								
368	1.01	184	15897600					Total	635 K\$

(backup slide)

LTO7 since 2015 : 300 MB/s per arm (up to 15) and 6.25 TB per table uncompressed

Cost was divided by a factor of 2 : 500 MB/s reasonable, 1 GB/s doable if needed for about 635 K\$ of tape split over several years and cost expected to go down

Network link upgrade to 10 Gbit/s = 1.25 GB/s possible: possibility for L3 farm in computer center