LHRS Analysis for d_2^n

Data Quality, Trigger Variable, & Scintillator Studies

D. Flay

9/9/10

- - Sample Calculation
 - Comparison to World Data
- Scintillator Calibration
 - S2m Time S1 Time
- Summary

A_1^n Statistical Error Projection (1)

Sample Calculation

- From the note, we have various quantities:
 - $N_p =$ Number of events that remain after a momentum cut only
 - $N_{\text{cut}} = \text{Number of events that remain after all cuts}$
 - $N_{\text{raw}} = \text{Number of events recorded for the sample run 2060}$
 - N_T = Number of events recorded in parallel running over the run ranges 1530–1553 and 1702–1719
 - $N_{\rm eff} = (N_{\rm cut}/N_{\rm raw}) \, N_T =$ Effective number of events that would remain after all cuts are applied to all parallel data
- The momentum cut:
 - $\delta p_{i,i-1}/2 < p_i < \delta p_{i,i+1}/2$ $\delta p_{i,j} = |p_i - p_j|, j = i - 1, i + 1$
 - For instance, if $p_i = 1.20, p_{i-1} = 1.13, p_{i+1} = 1.27$ (5-pass LHRS p settings) \Rightarrow cut = 1.165 < BB.tr.p[0] < 1.235

A_1^n Statistical Error Projection (2)

Sample Calculation

- Utilizing all the good electron cuts (see the note), we obtain:
 - $N_p = 30386$
 - $N_{\rm cut} = 4372$
 - $N_{\text{raw}} = 4681052$
 - $N_T = 214350416$
 - $\rightarrow N_{\rm eff} = 200199$
- The errors on the parallel asymmetry and A₁:

$$\Delta A_{\parallel}^{raw} = \frac{1}{\sqrt{N_{\text{eff}}}} = 0.223\%$$

$$\Delta A_{\parallel}^{n} \approx \Delta A_{\parallel}^{phys} = \frac{1}{P_{b}P_{t}RD\sqrt{N_{\text{eff}}}} = 2.388\%$$

- Physics quantities:
 - $P_b \approx 0.65$ is the beam polarization
 - $P_t \approx 0.60$ is the target polarization
 - $R \approx 0.30$ is the ratio of 3 He to neutron structure functions
 - $D \approx 0.80$ is the dilution factor

A_1^n Statistical Error Projection (3) E06-014 (5-pass Data) Compared to World Data

- With the S2m paddles calibrated, we now look to the S1 paddles
 - Look at the time difference between the two planes to see how to manipulate the time offsets for S1
 - The left-right (L-R) time offset for each paddle in S1 has already been done (and implemented in the DB)
- We consider the time difference between S2m (corrected) and S1 (raw) paddles:

$$\Delta t_{jk} = t_{\mathsf{S2m}_j} - t_{\mathsf{S1}_k}$$

- From this, we determine what offset needs to be applied to both the L and R PMTs
- We keep in mind the fact that the S2m paddles have each been calibrated to 61.15 ns
- Choose $\Delta t_{jk} = 6 \text{ ns}$

- There are only six time offsets to work with in the DB for the L and R PMTs
 - Utilize the average time difference for each paddle (in S1) in the quantity $\Delta t_{jk} \Rightarrow \Delta t_{jk,\mathrm{avg}}$
 - This should be fine as long as the Δt_{jk} 's are consistent with one another for a given S1 paddle
- Each (L and R) S1 PMT acquires the offset (in the DB):

$$\begin{array}{lcl} t_{\mathrm{off},L}^k & = & \delta t_L^k + f \delta t^k \\ t_{\mathrm{off},R}^k & = & \delta t_R^k + f \delta t^k \\ \delta t^k & = & 6.00 - \Delta t_{jk,\mathrm{avg}} \\ f & = & 20 \mathrm{ ch./ns} \end{array}$$

Scintillator Calibration				
S1 Paddle	S2m Paddle	$\Delta t_{\rm ik}$ (ns)	$\Delta t_{ m jk,avg}$ (ns)	
0	0	17.21	June 7	
	1	17.36	17.27	
	2	17.25		
	3	15.59		
1	4	15.55	15.56	
	5	15.55		
2	5	7.93		
	6	7.92	7.93	
	7	7.91		
3	8	8.05		
	9	8.07	8.05	
	10	8.04		
4	10	6.92		
	11	6.92	6.92	
	12	6.91		
5	13	4.23		
	14	4.18	4.21	
	15	4.23		

Corrected S2m time — Corrected S1 time: After

- Most Δt_{jk} are consistent
- Is it S1 or S2m yielding the discrepancy?
- Is the discrepancy too small to fix?

 	0.1 1111101.711101			
	Scintillator Calibration			
S1 Paddle	S2m Paddle	$\Delta t_{\rm jk}$ (ns)	$\Delta t_{ m jk,avg}$ (ns)	
	0	5.99		
0	1	5.98	5.99	
	2	6.02		
	3	5.95		
1	4	5.96	5.96	
	5	5.96		
	5	5.98		
2	6	6.01	5.99	
	7	6.00		
	8	6.02		
3	9	6.04	6.02	
	10	6.01		
	10	5.99		
4	11	5.99	5.99	
	12	5.98		
	13	5.99		
5	14	6.01	5.99	
	15	5.99		

Scintillator Calibration (5)

Corrected Time Averages

- Fairly good agreement
- TDC resolution is 0.05 ns/ch.

S1 Time Averages				
Paddle	$t_{\rm avg}$ (ns)			
0	55.17			
1	55.19			
2	55.18			
3	55.15			
4	55.18			
5	55.15			

S2m Time Averages		
Paddle	$t_{\rm avg}$ (ns)	
0	61.17	
1	61.15	
2	61.19	
3	61.15	
4	61.15	
5	61.15	
6	61.19	
7	61.19	
8	61.17	
9	61.19	
10	61.16	
11	61.17	
12	61.15	
13	61.15	
14	61.16	
15	61.14	

Scintillator Calibration (7)

S1, S2m Distributions

Temple University Hadronic & Nuclear Physics Group

Summary

- The projected statistical error on A₁ⁿ is promising
 - Will provide a direct test on the JLab E99-117 result
 - Extend the precision data coverage to large-x
- Δt_{jk} adjusted to 6 ns for appropriate S2m, S1 paddle combinations
 - β still displays significant jitter is it due to the ~ 0.01 –0.04 ns differences in S2m, S1 paddle times or is this time difference too small to fix?
 - Didn't get a chance to fine tune these numbers yet...

What's Next?