Analysis Progress for d₂ⁿ Diana Parno 9 September 2010

In this issue: • Cuts on vertex position • Energy loss

Cuts on Vertex Position (1)

 Last week, we discussed whether structures in the shape of dp/p were due to scattering in target glass

Cuts on Vertex Position (2)

• Cuts on BB.tr.vz remove one shoulder from pdiff = dp = $p_{tr} - p_{elastic}$, but not the other

Cuts on Vertex Position (3)

Energy Loss: Landau Curve

 Energy loss is usually modeled as a Landau distribution

$$\left\langle E_{final} \right\rangle = E_0 e^{-L/X_0}$$

- However, the most likely energy loss $\langle E_{final} \rangle E_0$ is less than the mean energy loss
- The final energy loss value must account for this distinction

sample Landau curve from Wikipedia

Incoming Energy Loss (1)

- We can divide energy loss into two regimes:
 - Before scattering (electrons incoming to target)
 - After scattering (electrons outgoing from target)
- From Chiranjib's dissertation, materials in the path of the incoming electron are:

Material	X ₀ (cm)	ρ (cm)	Thickness (cm)	Thickness (X ₀)
Be (beam pipe window)	35.28	1.848	0.0254	0.000719
⁴ He (in target enclosure)	528107.5	0.00166	22.86	0.0000433
Glass (target cell window)	7.038	2.76	0.01	0.00142
³ He (half of target cell)	43423	0.00125	19.9	0.000456

Incoming Energy Loss (2)

- To handle energy loss on incoming particles, Transversity used a special class
 THaBeamElossE06010
- From replay_prod4.C:

THaBeamElossE06010 *beam_eloss = new THaBeamElossE06010 ("b_eloss","beam energy loss module for E06010","rb"); gHaPhysics->Add(beam_eloss);

- We don't have this class in our build (although we do have a THaBeamEloss)
- Discrepancies in our handling of energy loss could affect our observed momentum shift

Outgoing Energy Loss (1)

 For glass and ³He traversed by outgoing particles, the number of radiation lengths traveled depends on the scattering angle

Outgoing Energy Loss (2): LHRS

For the LHRS, the scattering angle is fairly well-defined as $\theta \sim 45^{\circ}$

Material	X ₀ (cm)	ρ (cm)	Thickness (cm)	Thickness (X ₀)
³ He (in cell)	43423	0.00125	1.3435	0.0000309
Glass (cell wall)	7.038	2.76	0.1556	0.0221034
⁴ He (in target enclosure)	528107.5	0.00166	79.05	0.0001496
G10 epoxy (yellow cover)			0.0254	
Air	30423	0.00121	51.23	0.0016839
Kapton (LHRS entry window)	28.6	1.42	0.0254	0.0008881

Outgoing Energy Loss (3): BigBite

- The optics package works backwards from the detected momentum to the electron momentum immediately post-scattering
- This must be done on a track-by-track basis due to dependence on
 - Scattering angle

- Path length
- Vertex location (not supported in optics package)
- Materials information is hard-coded into compiled THaBeamElossE06010 class

What's Next?

- Optics
 - I've made a lot of progress understanding the BigBite optics algorithm
 - I'll have a report ready by next time
 - I am close to getting the coordinate transformation worked out (for calculation of scattering angle)
- Energy loss
 - Possible discrepancy in E_{loss} for incoming particles
- Elastics
 - Further work on cuts, understanding p_{diff} structure
- Compton

