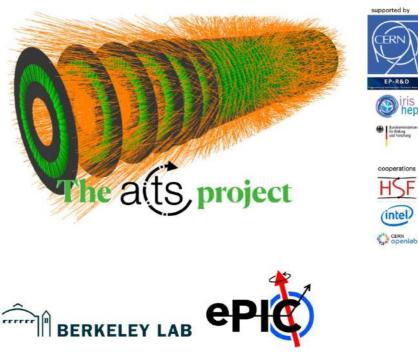
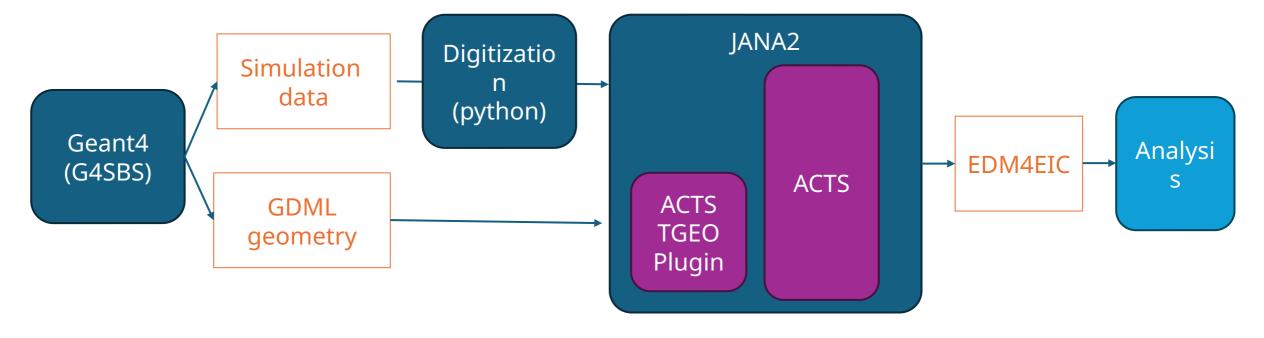
ACTS4NP - ACTS Tracking for Nuclear Physics 2025

Development of ACTS based tracking Updates

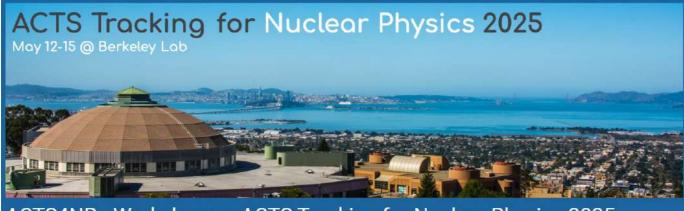
Dmitry Romanov


2025-05-28

- ACTS A Common Tracking Software
- ACTS experiment-independent toolkit for (charged) particle track reconstruction in (high energy) HENP physics experiments implemented in modern C++.
- The ACTS project provides high-level track reconstruction modules that can be used for any tracking detector.
- <u>Documentation link</u>
- <u>GitHub link</u>



ACTS for TDIS


- Geant4 (g4sbs) -> GDML -> TGeo geometry
- Custom digitization algorithms
- JANA2 (C++ modular framework)
- PODIO (EDM4EIC like tracking scheme)
- ACTS (v37.4.0) + TGeo plugin

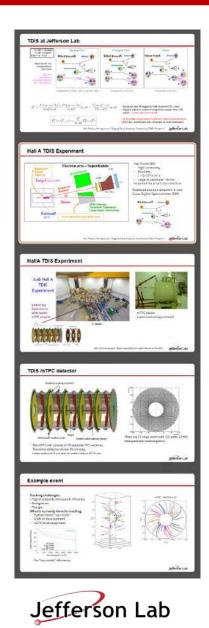
- <u>https://github.com/JeffersonLab/tdis</u>

ACTS4NP Conference

ACTS4NP - Workshop on ACTS Tracking for Nuclear Physics 2025

May 12–15, 2025 Lawrence Berkeley National Laboratory

"Bridge the ACTS community + NP experiments that might/already use ACTS"


Conference agenda (freestyle):

- ACTS updates and roadmap
- Use in large CERN experiments
- Use in NP experiments
- Lots of discussion on ACTS in NP
- ACTS Tutorials and ACTS insights
- GPU implementations and AI (GNNs)

Conference outcome

- ACTS developers are interested in TDIS case (for multitude of reasons)
- Worked together on ACTS TDIS code base
- Many discussions of the conference are aligned with TDIS experience:
 - —How to deal with non-pileup background? E.g. beam cloud background?
 - -How new smaller (than CERN or EIC) experiments start with ACTS?
 - -How to deal with gaseous detectors and TPC-s in particular?
 - -What are the workflow for questions / missing documentation
- Developed further updates in TDIS ACTS:
 - -Switch to ACTS based PODIO event model
 - -Switch to Gen3 geometry (later)
 - -How to do seeding

The ACTS TDIS global roadmap

- Benchmarks
- Seeding
- Benchmark efficiency at high multiplicity (some seeding tuning)
- Vertexing

THANK YOU!

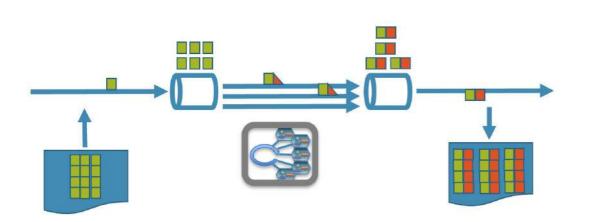
BACK&UP

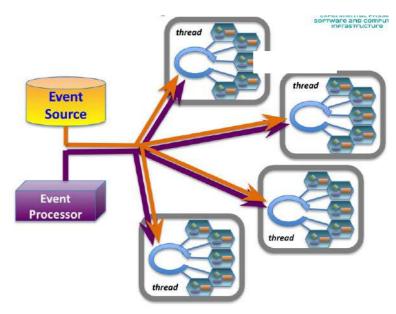
EIC software stack

Why is a good idea:

- NP physicists became familiar with it
- Future experiments select it or modification
- EDM4EIC Analysis compatibility
- "Algorithms" allows easy algorithms decoupling. Should be easy to reuse existing EIC algorithms
- JANA2 developers interested in real life JANA2 + ACTS example

But...

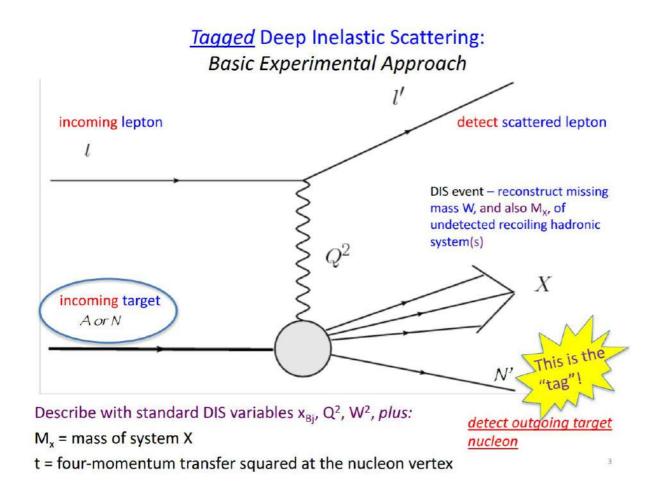

- Do small experiments or detector setups need all that for EIC?
- Do "Algorithms" library really allow to reuse something easily?
- Could we automatically upgrade tracking algorithms as EIC upgrades?
- Etc. etc. etc.


JANA2

- JANA2 second generation C++ framework with nearly 2 decades of experience behind it
- Modern coding and CS practices
- Streaming DAQ and heterogeneous hardware support
- Active development
- ElCrecon implements algorithms for ePIC in JANA2 <u>https://github.com/eic/ElCrecon</u>

Documentation:https://jeffersonlab.github.io/JANA2/Examples:https://github.com/JeffersonLab/JANA2/tree/master/src/examplesExample projects:https://github.com/JeffersonLab/JANA2/tree/master/src/examples

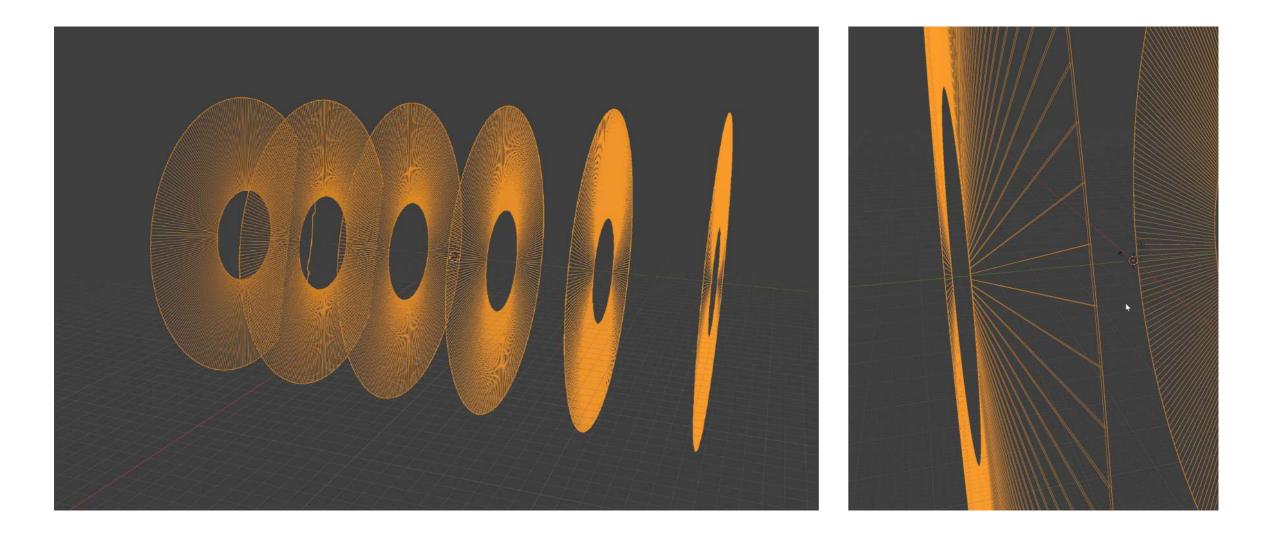
JANA2 parallelization



Publications:

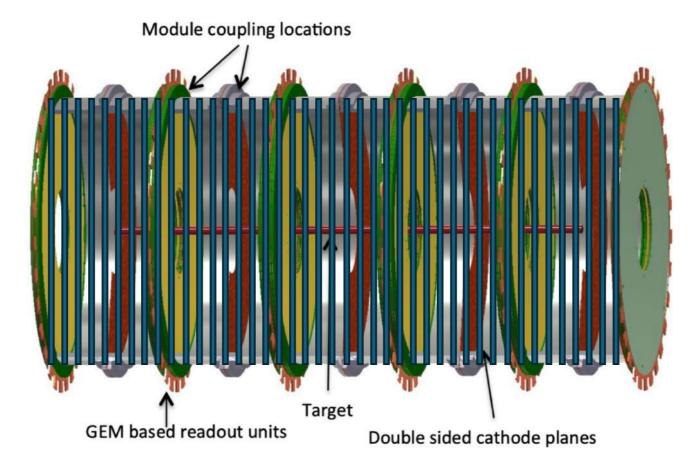
https://arxiv.org/abs/2202.03085 Streaming readout for next generation electron scattering experiments https://doi.org/10.1051/epjconf/202125104011 SRO of the CLAS12 Forward Tagger Using TriDAS and JANA2 https://doi.org/10.1051/epjconf/202024501022 JANA2 Framework for Event Based and Triggerless Data Processing https://doi.org/10.1051/epjconf/202024507037 Offsite Data Processing for the GlueX Experiment

Tagged Deep Inelastic Scattering (TDIS)

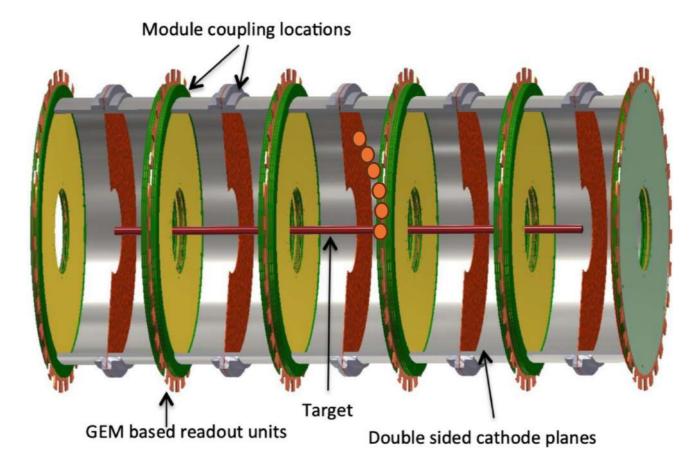

Ref: Cynthia Keppel "Exploring QCD with Light Nuclei at the EIC" Ref: Rachel Montgomery "Tagged Deep Inelastic Scattering (TDIS) Program" HERA (ZEUS and H1 Collaborations) Leading Neutron Production COMPASS Experiment at CERN – Pion-Induced Drell-Yan Processes EIC – considered as TDIS major future platform

JLaTDIS program: Pion TDIS

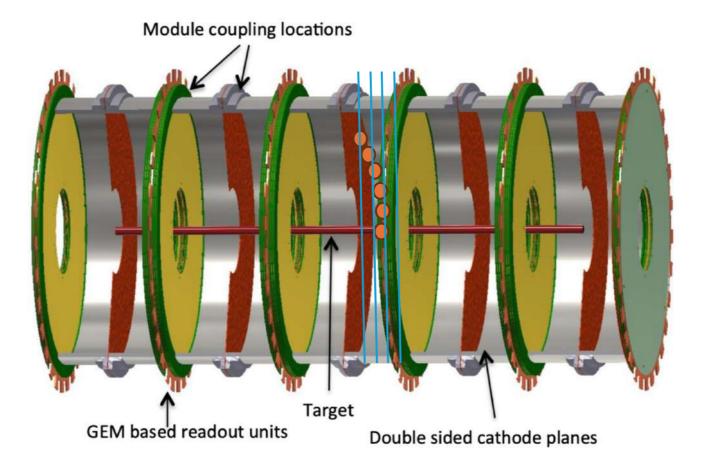
- C12-15-006, PAC43 approved
- C1 → subject to technical review
 Kaon TDIS
- Run group C12-15-006A,
- PAC45 approved *nTDIS*
- Run Group C12-15-006B,
- PAC49 approved



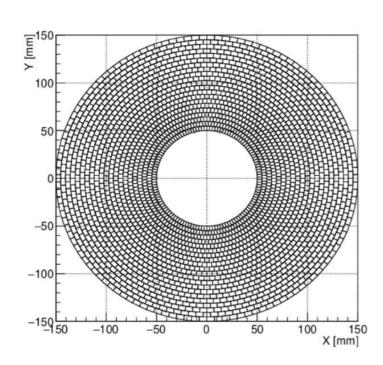
ACTS Geometry (naïve import)

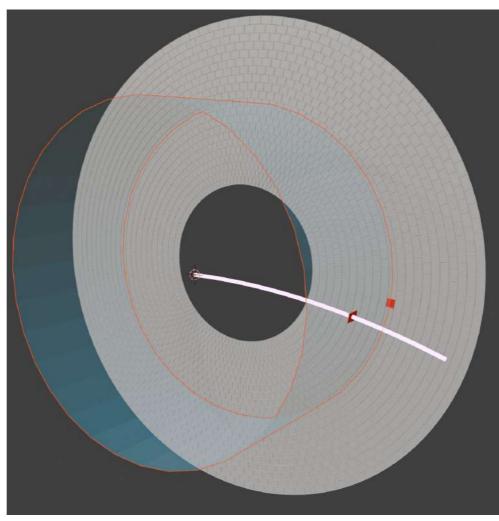


Space grid approach

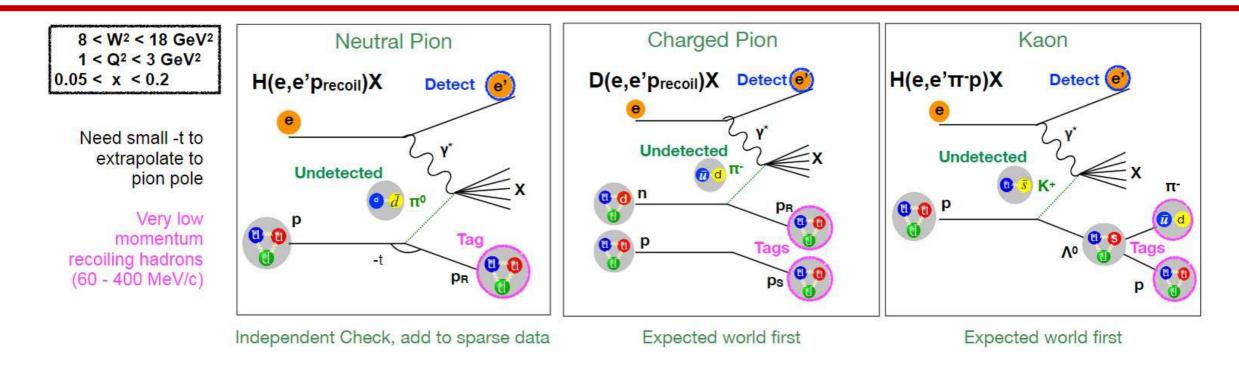


Adaptive grid approach


Adaptive grid approach

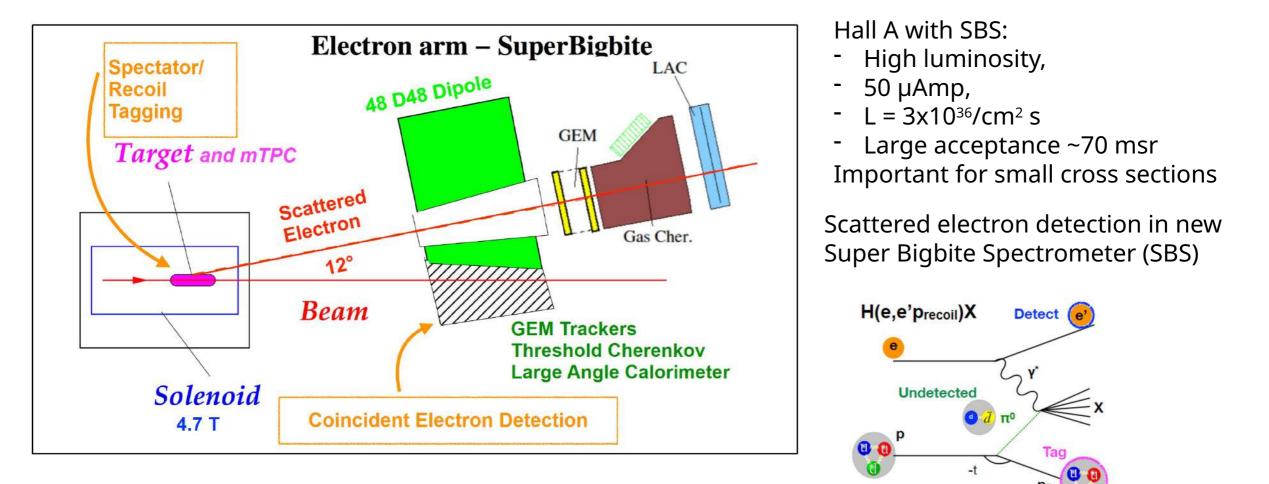


Tube geometry approach


• Manually create cylindrical surfaces for each ring that go along z for the length of the detector

TDIS at Jefferson Lab

$$R^{T} = \frac{d^{4}\sigma(ep \to e'Xp')}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \to e'X)}{dxdQ^{2}} \Delta z\Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z\Delta t$$

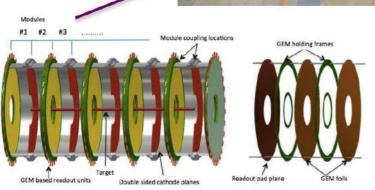

$F_2^T(x, Q^2, z, t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x, Q^2)$

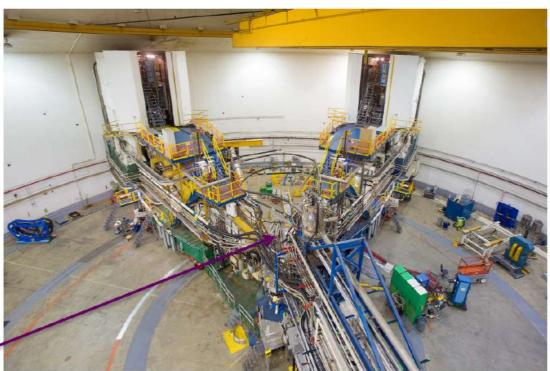
Measure ratio of tagged to total inclusive DIS x-sec
 Tagged signal is orders of magnitude smaller than DIS signal → need high luminosity!

JLab is the unique place to perform these measurements
Pion flux contribution also dominant at JLab kinematics

Ref: Rachel Montgomery "Tagged Deep Inelastic Scattering (TDIS) Program" Jefferson Lab

Hall A TDIS Experiment



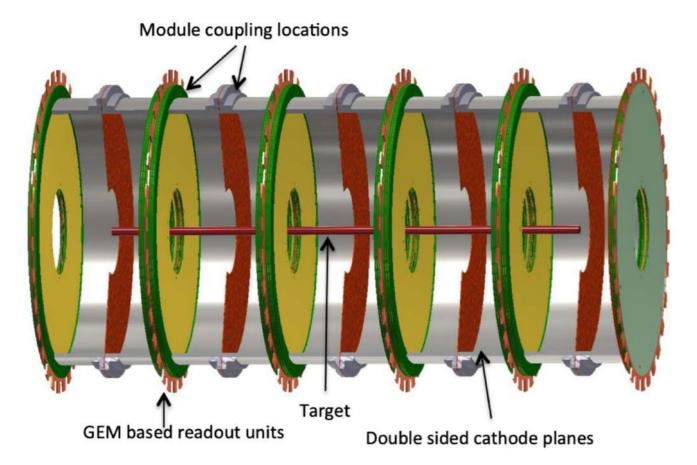

Ref: Rachel Montgomery "Tagged Deep Inelastic Scattering (TDIS) Program" Jefferson Lab

HallA TDIS Experiment

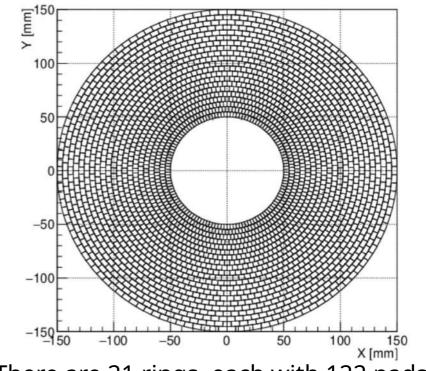
JLab Hall A TDIS Experiment

proton tag detection in GEM-based mTPC at pivot

e- beam



mTPC inside superconducting solenoid

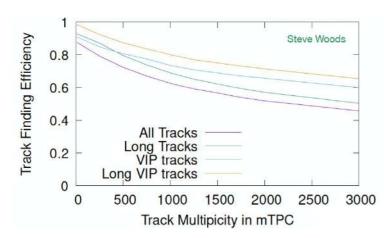


Ref: Cynthia Keppel "Exploring QCD with Light Nuclei at the EIC"

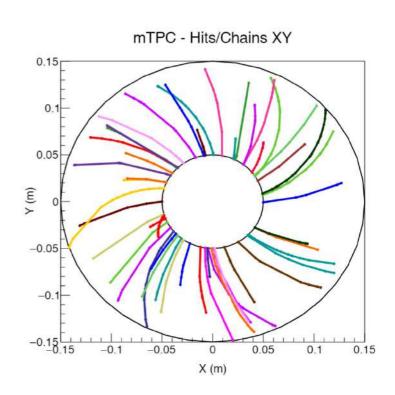
TDIS mTPC detector

The mTPC will consist of 10 separate TPC volumes. The entire detector will be 55 cm long. Inner radius of 5 cm and an outer radius of 15 cm.

There are 21 rings, each with 122 pads, (2 562 total pads per readout plane).


Example event

Tracking challenges:


- High multiplicity (thousands of tracks)
- Background
- Pileups

What is currently there for tracking:

- Python based "toy model"
- GNN (in development)
- ACTS (in development)

^{0.2-}0.1 (m) z -0.1 -0.2 $\begin{array}{c} 0.15 \\ 0.1_{0.05} \\ 0 \\ \gamma_{(m)} \\ 0.05_{-0.1_{-0.05}} \\ 0.1_{-0.05} \\ 0.1_{-0.0$ 0.05 0.1 0.15 X (m)

The "toy model" efficiency