Analysis Progress for the d_2^n analysis meeting

Diana Parno

Carnegie Mellon University

March 9, 2010

Diana Parno (Carnegie Mellon University)

Analysis Progress

March 9, 2010 1 / 14

э

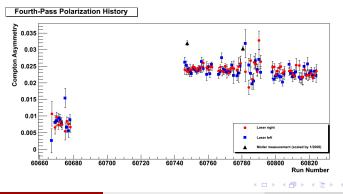
-

< ∃ >

Outline

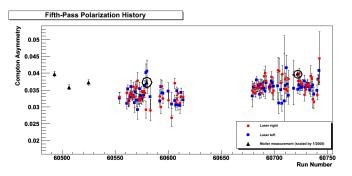
Compton

- Rough Comparison to Møller
- Statistical Errors

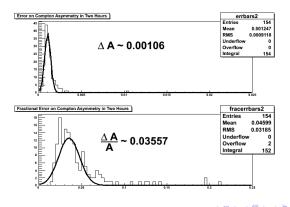

2 Beam Charge Calibration

- Introduction
- Scalers
- Faraday Cup
- Results for BigBite Arm

3) What's Next?


Rough Comparison to Møller (i): Four Pass

- ullet Compton asymmetry \propto beam polarization (measured by Møller)
- We can't make any absolute comparisons without the analyzing powers
- By applying an arbitrary scale factor $(\frac{1}{2000})$ to the Møller results, we CAN make a relative comparison for each beam energy


Rough Comparison to Møller (ii): Five Pass

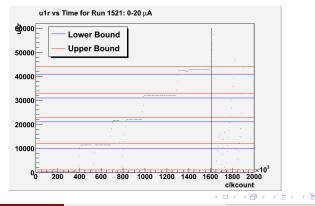
- Difference in analyzing power means that our scaled Møller measurements land in a different spot relative to Compton data
- Early Møller runs were before CMU DAQ was in final working state


Compton Statistical Errors (i)

- Rough check on the statistical errors on the Compton asymmetries
- Most runs lasted about two hours
 - Some were much shorter (e.g. beam troubles)
 - A couple were much longer

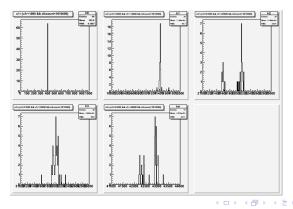
Compton Statistical Errors (ii)

- The history plots I've been showing split the runs into left and right modes
- Each represents about one hour of running
- These statistical errors are shown below:



Beam Charge Calibration: Basics

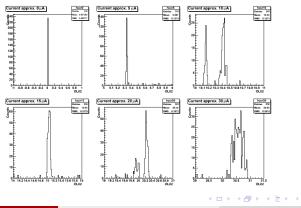
- Upstream and Downstream BCMs send output to VtoF converters with x1, x3, x10 multiplication
- We read these six beam-current signals into scalers in both arms
- \bullet Final step: Calibrate counts in beam current scalers to actual beam current in $\mu {\rm A}$
 - Calibrate BCM scalers to OL02 cavity (at injector)
 - Calibrate OL02 cavity to Faraday Cup (at injector)
 - With OL02 as intermediary, can calibrate scalers to FC


BCM Scaler Calibration Strategy (i)

- We have two beam charge calibration runs:
 - 1521/20227 (0-20 μA)
 - 1522/20228 (30 μA)
- The second run is relatively simple, but in the first run we need to isolate each of the beam current set points:

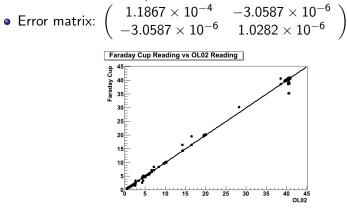
BCM Scaler Calibration Strategy (ii)

- For each beam current set point (0, 5, 10, 15, 20, and 30 μ A):
 - Generate 1d histogram of scaler rate
 - Gaussian fit to locate central value
 - (Two peaks for 10 and 20 μ A set points)
 - Repeat for each of the six scalers ...

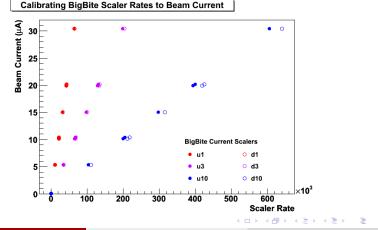

Diana Parno (Carnegie Mellon University)

Analysis Progress

March 9, 2010 9 / 14


BCM Scaler Calibration Strategy (iii)

- We can repeat this process for the OL02 readouts
- The OL02 readings are from the same beam current scan as the scaler readings, so we have the same six set points (and eight central values)
- These OL02 values can be converted to a beam current in $\mu A...$


OL02 Calibration Strategy

- We can calibrate OL02 to Faraday Cup in separate run
- Linear fit allows us to say what the actual beam current (i.e. Faraday Cup reading) would be for a given value of OL02
- Results: m = 0.9967, b = 0.0078

Results for BigBite Arm (i)

- Relationship between the six scalers looks reasonable •
- Downstream BCM shows slightly higher count rate \rightarrow slightly higher • voltage readout

Results for BigBite Arm (ii)

- Fit a straight line to each scaler to get a calibration constant
- Actual Beam Current $(\mu A) = m \times (\text{Scaler Rate}) + b$

Scaler	$m(\mu A/count)$	<i>b</i> (offset in μA)	$1/m$ (counts/ μ A)
u1	$4.78239 imes 10^{-4}$	$-1.64020 imes 10^{-1}$	2091.0
d1	$4.66269 imes 10^{-4}$	$-4.73131 imes 10^{-2}$	2144.7
u3	$1.55279 imes 10^{-4}$	$-5.28190 imes 10^{-2}$	6440.0
d3	$1.50729 imes 10^{-4}$	$-3.80298 imes 10^{-3}$	6634.4
u10	$5.11383 imes 10^{-5}$	$-3.11689 imes 10^{-2}$	19554.8
d10	$4.77707 imes 10^{-5}$	$1.27715 imes 10^{-3}$	20933.3

3

What's Next?

- BB Optics
 - BPM calibration ...
- Compton
 - Analyzing-power work ongoing
 - Real comparison to Møller soon?
 - Systematics
- Beamline calibrations
 - BPM
 - BCM: Confirm LHRS scalers show same behavior as BB scalers
 - BCM: DB update

3