Skim Scintillator Calibration Summary

D. Flay

12/16/10

(日)

OUTLINE

- Skim Level 1
- Checking the Beam Helicity Asymmetry

A New Method

3 SUMMARY

SKIM (1) Update: Skim Level 1

- Skim Level 1 takes an input ROOTfile and analyzes the beam trips
 - Output is a skim ROOTfile, with a new variable (*in addition to the ones already there*)
 - skim_beam_trip (boolean quantity)
 - On an event-by-event basis, the beam trips are tagged
 - Cutting on beam trips is simple now: skim_beam_trip==0 (no trips) or skim_beam_trip==1
 to look at beam trip events
- Working from a new run list (will post to Wiki tomorrow)

SKIM Scintillator Calibration Summary

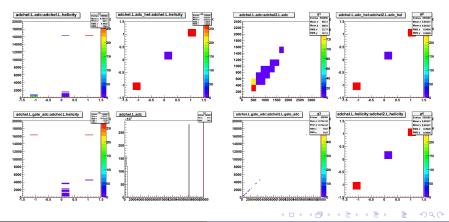
SKIM LEVEL 1 CHECKING THE BEAM HELICITY ASYMMETRY

SKIM (2) Skim Level 1

• Some statistics so far (with respect to beam trips):

p = 0.60 GeV, 4-pass Kinematic				
Run	Total Events	Good Events (%)	Bad Events (%)	
20675	1291073	94.96	5.04	
20676	1408648	97.64	2.36	
20677	1272021	97.65	2.35	
20678	1273606	97.32	2.68	
20679	1297077	93.06	6.94	
20680	1300432	96.35	3.65	
20682	161221	97.71	2.29	
20718	1686830	95.32	4.68	
20719	1689692	95.28	4.72	
20720	392720	99.72	0.28	

 A new condition on good runs: require the percentage of good events to be above some value – maybe 70–80%?

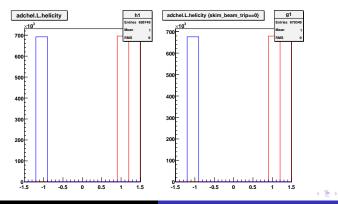

4/13

SKIM Scintillator Calibration Summary

SKIM LEVEL 1 CHECKING THE BEAM HELICITY ASYMMETRY

SKIM (3) Skim Level 1 – Checking the Beam Helicity Asymmetry

> First, some plots to make sure our beam helicity variables are behaving as expected:


TEMPLE UNIVERSITY HADRONIC & NUCLEAR PHYSICS GROUP

SKIM LEVEL 1 CHECKING THE BEAM HELICITY ASYMMETRY

SKIM (4) Skim Level 1 – Checking the Beam Helicity Asymmetry

• The beam helicity asymmetry is:

$$A_{hel} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

TEMPLE UNIVERSITY HADRONIC & NUCLEAR PHYSICS GROUP

SKIM LEVEL 1 CHECKING THE BEAM HELICITY ASYMMETRY

Image: Image:

SKIM (5) Skim Level 1 – Checking the Beam Helicity Asymmetry

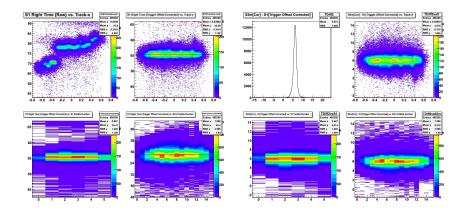
Beam helicity asymmetries with and without beam trip (BT) cuts:

p = 0.60 GeV, 4-pass Beam Helicity Asymmetries				
Run	A_{hel} (w/o BT cut)	A_{hel} (with BT cut)	Percent Difference (%)	
20675	1.11E-03	9.19E-04	9.45	
20676	2.69E-03	2.69E-03	0.00	
20677	-1.30E-03	1.37E-03	2.18	
20678	-1.32E-04	-1.16E-04	6.14	
20679	-1.70E-03	-1.55E-03	4.75	
20680	1.90E-04	1.63E-04	7.82	
20682	-1.96E-03	-1.21E-03	23.56	
20718	-9.51E-04	-8.28E-04	6.92	
20719	-1.02E-03	-1.06E-03	1.88	
20720	-2.25E-03	-2.08E-03	3.80	

SCINTILLATOR CALIBRATION (1) An Event-by-Event Approach: Points to Keep in Mind

- In order to correct the jitter we see in S1, we consider a few things:
 - The raw S2m times are not aligned. The δ_j needed to align the TDC time for each paddle of index *j* should be (essentially) applied to the S1 paddles (as a starting point)
 - For a given S2m paddle (of index *j*) that takes the trigger timing, there should be a correlated event for one of the S1 paddles (of index *i*)
 - So For a given S1 paddle, there should be a certain time difference Δt_{ij} for the jth paddle in S2m that took the timing. Ideally, for a given *i*, these times would be virutally the same; however, they are not.

SCINTILLATOR CALIBRATION (2) AN EVENT-BY-EVENT APPROACH: PROCEDURE

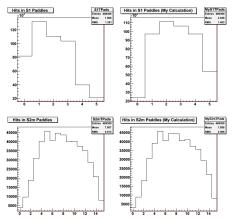

- Given the points on the previous slide, we first align the S2m right raw times (yielding L.s2.rt_c[j])
- From here we proceed as follows:
 - Going event by event, we see which S2m paddle took the trigger time (i.e., the event has a time in the self-timing peak in S2m paddle j)
 - For this event, we then scan through the S1 paddles to see which paddle it fired (call this paddle *i*)
 - So Form the time difference $t_{ij} = t_j^{s2m} t_i^{s1}$. In total, there are 96 possible combinations, forming a matrix T_{ij} . We only consider 18 of the t_{ij} (based on the paddle mapping of S2m to S1); all other entries are set to zero.

The new S1 time is formed as (f = 0.05 ns/ch.):

$$t_{i,cor} = f \times t_{i,raw} + t_{ij}$$

A NEW METHOD

SCINTILLATOR CALIBRATION (3) AN EVENT-BY-EVENT APPROACH: RESULTS


TEMPLE UNIVERSITY HADRONIC & NUCLEAR PHYSICS GROUP 10

・ロン・雪と・雪と・ ヨン・

SCINTILLATOR CALIBRATION

A NEW METHOD

SCINTILLATOR CALIBRATION (4) AN EVENT-BY-EVENT APPROACH: THE SMOKING GUN (?)

It's clear that the variables *.t pads may not be working correctly - my calculations show a much more unform distribution of hits in S1 as opposed to that seen by L.s1.t_pads

- L.s2.t_pads seems to agree quite well with my calculations
- This may be (one of, at least) the issue here

SUMMARY

Data Quality:

- Skim stage 1 analysis underway
 - Run into an issue with segmentation faults can't seem to close the newly generated ROOTfile (for runs with high event counts...)
- Scintillators:
 - A nice approach to a solution but how to implement it?
- SAMC:
 - Playing with the simulation, understanding the subtleties of the variables and their respective distributions

WHAT'S NEXT?

- Data Quality:
 - Continue to re-replay all production data
 - Clean up code, continue to carry out skim stage 1
- Scintillators:
 - What do we think of this latest analysis?
- SAMC:
 - Continue work on simulation, understanding why $\delta p/p, \phi, \theta,$ etc. behave the way they do