Motivation

Hall C TCS (LOI12-15-007): brems. photon beam, transversely polarized UVA target, NPS.

Hall B DVCS (PR12-12-10): electron beam, transversely polarized HD-ice target, CLAS12.

Different phase space coverage, but similar physics.

Figure of Merit for asymmetry measurements with polarized target:

$$FOM = R_A \cdot D_f^2 \cdot P_t^2$$

 R_A -- event rate in acceptance,

 D_f -- dilution factor of target,

 P_t -- target polarization.

Hall C TCS:

- Photon flux -- 4 · 10¹¹/s (CUA HIPS workshop);
- Target 3 cm length, 0.6 packing fraction, 0.817 g/cm³ NH₃ density, 0.125 LHe density.

 \rightarrow 0.4 · 10³⁶ $cm^{-2}s^{-1}$ luminosity.

- Combined with acceptance simulations → 2 Hz total rate.
- **Dilution factor**: depends on kinematics, ranges from 0.05 to 0.2, 0.16 on average; **0.147** naïve estimate.
- Target polarization: 90% (CUA HIPS workshop).
- Combined all together: FOM = 0.036 Hz.

Hall B DVCS (based on PR12-12-10):

Event rate: 1M in 100 days \rightarrow 0.12 Hz useful event rate; ~1/3 dilution factor \rightarrow **0.36 Hz**

total rate.

Dilution factor: ~1/3.

Target polarization: 60%.

Combined all together: FOM = 0.014 Hz.

Conclusion: HC TCS is competitive.