LAD (not-a-)Toy Monte Carlo

- $(e, e'p_{rec})$ events generated according to Wim Cosyn's calculation
- 2 Vertices generated within extended target cell
- 3 Tracks propagated with no magnetic field
- 4 Angular deflection from multiple scattering from material
- 5 Reconstruction of events based on hit positions / timing

Geometry

This is my best-informed guess. It is easy to update any numbers.

Hit positions in simulation

Multiple scattering

From the PDG

$$\sigma_{\theta} = \frac{13.6 \text{ MeV}}{\beta p} \sqrt{\frac{2x}{X_0}} \left[1 + 0.038 \log \left(\frac{x}{X_0} \right) \right]$$

Material	Thickness	x/X_0
Liquid D ₂	1 cm	0.0013
Target wall	200 μ m	0.0022
Scattering chamber window	$150~\mu \mathrm{m}$	0.0042
Thin GEMs	_	0.0030
Reg. GEMs	_	0.0050
THICK GEMs	_	0.0100

Simulation accounts for incidence angle of tracks through material.

Reconstructed Vertex Resolution

Further assumptions:

- GEMs have 500 μ m position resolution in each direction
- Vertex reconstructed by straight line between GEM hits to x = 0
 - LAD hit position ignored for now
- Ignored vertex resolution of HMS and SHMS for now

Reconstructed Vertex Resolution

Background rejection power

What fraction of the random background survives a $\pm 2\sigma$ vertex cut?

GEMs	30 cm Target	20 cm Target
Thin	16%	24%
Regular	21%	31%
Thick	31%	44%

What comes next?

This simulation is ready to go, once geometry is double-checked.

- Count-rates, given spectrometer settings
- Optimize spectrometer settings given signal/bkg rates
- Optimize GEM placement

Suggestions very much appreciated!