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Abstract

The interpretation of the signals detected by high precision experiments aimed at measuring

neutrino oscillations requires an accurate description of the neutrino-nucleus cross sections. One of

the key element of the analysis is the treatment of nuclear effects, which is one of the main sources

of systematics for accelerator based experiments such as the Long Baseline Neutrino Experiment

(LBNE). A considerable effort is currently being made to develop theoretical models capable of

providing a fully quantitative description of the neutrino-nucleus cross sections in the kinematical

regime relevant to LBNE. The approach based on nuclear many-body theory and the spectral

function formalism has proved very successful in explaining the available electron scattering data

in a variety of kinematical conditions. The first step towards its application to the analysis of

neutrino data is the derivation of the spectral functions of nuclei employed in neutrino detectors, in

particular argon. We propose a measurement of the coincidence (e, e′p) cross section on argon. This

data will provide the experimental input indispensable to construct the argon spectral function,

thus paving the way for a reliable estimate of the neutrino cross sections. In addition, the analysis

of the (e, e′p) data will help a number of theoretical developments, like the description of final-state

interactions needed to isolate the initial-state contributions to the observed single-particle peaks,

that is also needed for the interpretation of the signal detected in neutrino experiments.

We request 9 days of beam time at 2.2 GeV, 1 day for calibration and 8 days for the measurement

of parallel and anti-parallel kinematics of (e, e′p) on an argon target. The beam time request

accounts for radiative losses and includes several hours of data taking dedicated to measure possible

backgrounds. This measurement will provide the only available high statistics sample of electron

scattering data on argon in reduced-FSI kinematics.
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1. Motivation

Neutrino physics is entering the age of precision measurements. Several experiments

have detected neutrino oscillations, thus providing unambiguous evidence that neutrinos—

assumed to be massless in the Standard Model of particle physics—have in fact non-vanishing

masses. Reactor neutrino experiments carried out in the last five years (Double Chooz

[1], Daya Bay [2] and RENO [3]) recently reported high quality measurements of the θ13

mixing angle, the value of which turned out to be ∼10 deg. The large θ13 mixing angle will

enable future experiments – such as the Long-Baseline Neutrino Experiment (LBNE) in the

United States [4]—to search for leptonic CP violation in appearance mode, thus addressing

one of the outstanding problems in particle physics. However, these searches will involve

high precision determinations of the oscillation parameters, which in turn require a deep

understanding of neutrino interactions with matter. In view of the achieved and expected

experimental accuracies, the treatment of nuclear effects is indeed regarded as one of the

main sources of systematic uncertainty.

Over the past decade, it has become more and more evident that the independent par-

ticle model of nuclei—the ultimate implementation of which is the relativistic Fermi gas

model (RFGM) routinely employed in simulation codes—is not adequate to account for the

complexity of nuclear dynamics and the variety of reaction mechanisms contributing to the

detected signals.

The large discrepancy between the results of Monte Carlo simulations and the double

differential cross section of charged current (CC) quasielastic (QE) interactions in carbon,

recently measured by the MiniBooNE Collaboration using a beam of average energy ∼0.8

(0.7) GeV in the neutrino (antineutrino) mode, is a striking manifestation of the above

problem [5–7]. More recently, the analysis of the inclusive νµ-nucleus cross sections at beam

energy in the range 2− 20 GeV, measured by the MINERνA Collaboration using a variety

of targets, led to the conclusion that none of nuclear models implemented in Monte Carlo

simulations is capable of reproducing the data [8].

A considerable effort is currently being made to develop theoretical models capable of pro-

viding a fully quantitative description of the neutrino-nucleus cross section in the kinematical

regime relevant to LBNE, corresponding to beam energies ranging from a few hundred MeV

to a few GeV. In this context, a key element is the information provided by the large body
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of theoretical and experimental studies of electron-nucleus scattering.

The approach based on nuclear many-body theory and the spectral function formalism

has proved very successful in explaining the available electron scattering data in a variety

of kinematical conditions (for a recent review on the quasielastic sector, see Ref. [9]). The

first step in its application to the analysis of neutrino data is the derivation of the spectral

functions of nuclei employed in neutrino detectors.

The spectral function, P (k, E), yields the probability of removing a nucleon of momen-

tum k from the nuclear ground state leaving the residual system with excitation energy

E. Accurate theoretical calculations of P (k, E), based on nuclear many-body theory, have

been carried out for the three-nucleon system [10, 11] and uniform, isospin-symmetric, nu-

clear matter [12]. For the isospin symmetric p-shell nuclei 16O and 12C, relevant to water

Cherenkov detectors (e.g. Super-K) and mineral-oil detectors (e.g. MiniBooNE), respec-

tively, the spectral functions have been obtained in Refs. [13, 14], combining theoretical

calculations and the information provided by coincidence (e, e′p) experiments. Within this

scheme, the availability of the (e, e′p) data is essential to accurately describe binding ener-

gies, spectroscopic factors, and widths of the shell model states.

As future neutrino experiments—most notably LBNE—will use large liquid argon de-

tectors to perform a precision measurement of the CP violating phase, understanding the

response of argon to neutrino and antineutrino interactions is of paramount importance. To

obtain the spectral functions of calcium 40Ca and argon 40Ar, the authors of Ref. [15] have

proposed a model, inspired by the one developed in Refs. [13, 14] but involving additional

and rather crude approximations.

The electron scattering data for calcium is scarce. A (e, e′p) experiment with low missing

energy resolution has been carried out at Saclay in the 1970s [16], while the more recent,

high resolution, measurements performed at NIKHEF-K [17] cover a limited energy range.

The calcium spectral function of Ref. [15] has been derived using the results of theoretical

calculations of the momentum distribution [18] and the empirical energy spectrum predicted

by the dispersive optical-model analysis of Ref. [19].

As far as argon is concerned, the current state of affairs looks even more problematic,

the only available electron scattering data being the inclusive cross sections measured at

Frascati in the 1990s [20]. The empirical information on the energy levels is limited to a few

neutron states in the vicinity of the Fermi surface, obtained in Ref. [21], and no theoretical
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calculations of the momentum distribution are available. Owing to the lack of the needed

input information the derivation of a model spectral function, even within the oversimplified

scheme proposed in Ref. [15], involves very large uncertainties.

The inclusive electron-argon cross section obtained using the spectral function of Ref. [15]

turns out to be in fairly good agreement with the Frascati data. The same spectral function

has been also used to obtain νµ and ν̄µ CC cross sections consistent with the measurements

recently reported by the ArgoNeuT Collaboration, obtained at mean neutrino (antineutrino)

energy of 9.6 (3.6) GeV [22].

However, a more realistic model—including a more accurately determined spectrum and

measured spectroscopic factors and momentum distributions of the shell model states—will

be needed to reach an accuracy comparable to that required for precise neutrino experiments,

as well as to describe more exclusive processes.

Owing to the strong isospin dependence of nuclear forces, nucleon-nucleon interactions

in the proton-neutron sector are very different from those taking place in the proton-proton

and neutron-neutron channels. As a consequence, in the absence of both experimental infor-

mation on argon spectroscopic factors and theoretical input on the correlation contribution

to the spectral function of isospin-asymmetric nuclear matter, P (k, E) cannot be accurately

determined within the scheme of Refs. [13, 14].

A direct measurement of the coincidence (e, e′p) cross section on argon would provide the

experimental input indispensable to constrain the generalization of the theoretical model

presented in Ref. [13, 14] to argon, thus paving the way for a reliable estimate of the neutrino

cross sections. In addition, the analysis of the (e, e′p) data will require a number of theoretical

developments—e.g. the description of final-state interactions needed to isolate the initial-

state contributions to the observed single-particle peaks [23]—that will also be needed for

the interpretation of the signal detected in neutrino experiments.

To see how the description of nuclear dynamics affects the measurement of neutrino

oscillations, consider the simplest case of two neutrino flavors, α and β. The oscillation

probability

Pα→β = sin2(2θ) sin2

(
∆m2L

4Eν

)
, (1)

driven by a single mixing angle θ and the squared-mass difference ∆m2, is a function of the
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neutrino energy Eν . Accelerator experiments obtain neutrino beams as decay products of

pions, which are in turn produced by interactions of the primary proton beam with the target

material. As a consequence, the neutrino beam is not monochromatic, and in any interaction

events the neutrino energy must be inferred from the measured kinematical variables of the

particles involved the process.

In the case of CC QE scattering off a free nucleons at rest, the observed energy and

production angle of the outgoing charged lepton provides sufficient information to determine

Eν . However, this is no longer the case for CC QE scattering off nuclear targets, the use

of which is mandatory to reach acceptable statistics. While typically the neutrino energy is

still reconstructed from the measured kinematics of the charged lepton only, the accuracy of

this method is limited by the accuracy to which nuclear effects are described by the Monte

Carlo simulations employed for data analysis.

The distributions of nucleon’s momentum and energy–described by the nuclear spectral

function–smear the reconstructed energy. In addition, the interaction products undergo final

state interactions with the surrounding nucleons, which also affects their energy. Finally, in

the nuclear medium more complex reaction mechanisms, such as those involving two-body

currents, have to be taken into account, as they significantly affect energy reconstruction.

The authors of Ref. [24] have shown that the irreducible background arising from pion

production followed by nuclear absorption also plays a critical role, and may lead to under-

estimating the neutrino energy by as much as ∼300 MeV. As a consequence, an accurate

estimate and subtraction of this background from the CC QE event candidates is called for.

The above issues are all very relevant, as many experiments exploit QE interactions

for their neutrino oscillation analysis. The efficiency of identification of QE interactions is

usually very high, but there are other neutrino interactions (1π and DIS) occurring at higher

neutrino energies, with much lower reconstruction efficiency, due to the high multiplicity of

the final state. Most of the current experiments rely on Monte Carlo predictions rather than

direct observation to identify and quantify the efficiency and energy reconstruction bias

arising from such non-QE events. The bias induced in the reconstructed neutrino energy by

non-QE events may in fact be the source of the low energy excess observed by MiniBooNE.

The smearing, or the shift, of the reconstructed energy induced by non-QE interac-

tions has been recently analysed in Refs. [25–29]. Of particular interest are the studies of

Ref. [28, 29], in which an ideal neutrino oscillation experiment is simulated using different
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nuclear models in the event generation and oscillation fit. Based on these analyses, the

authors conclude that nuclear models matter at the level of 10–20% for the determination of

the oscillation parameters. Of course, it should be considered that all recent neutrino exper-

iments, such as MiniBooNE, MINOS, T2K and NOνA, have their systematic uncertainties

on neutrino cross sections and nuclear models greatly reduced by a variety of cross-section

measurements carried out using carbon and oxygen. However, the situation will be different,

and much worse, in the case of LBNE, which will use Argon as the target nucleus.

As a final remark, we note that, in addition to the importance for the neutrino program,

the precise determination of the structure of the argon nucleus will be relevant to the LBNE

search for nucleon decay leading to a violation of baryon-number conservation. For liquid-

argon detectors, the channels of particular interest are the p → K+ + ν̄ and p → K0 + µ+.

For a decaying proton at rest, the produced kaon would be monochromatic. However,

the initial distribution of proton’s momentum and energy in the nucleus–dictated by the

spectral function–is responsible a non-negligible smearing of the kaon’s momentum [30, 31].

To achieve an accurate modeling of this nuclear effect, it is essential to obtain the relevant

nuclear structure information measuring the (e, e′p) cross section off argon.

2. THE (e, e′p) CROSS SECTION

We plan to study the process

e+ A → e′ + (A− 1)⋆ + p , (2)

in which an electron of initial four-momentum ke ≡ (Ee,ke) scatters off a nuclear target to

a state of four-momentum k′
e ≡ (Ee′ ,ke′). The hadronic final state consists of a proton of

four momentum p ≡ (Ep,p) and the undetected (A− 1)-nucleon recoiling system.

The differential cross section of process (2) can be written in the from

dσA

dEe′dΩe′dEpdΩp

= K
α2

Q4

Ee′

Ee

LλµWλµ , (3)

where K = |p|Ep, while Ωe′ and Ωp denote the solid angles specifying the directions of the

outgoing electron and proton, respectively. In the above equation α = 1/137 is the fine

structure constant, while the squared four momentum transfer is given by

q2 = −Q2 = ω2 − |q|2 , (4)
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with q = ke − k′
e ≡ (ω,q).

The tensor Lλµ, that can be written, neglecting the electron mass, as

Lλµ = 2
[
kλ
e k

µ
e′ + kµ

e k
λ
e′ − gλµ(keke′)

]
, (5)

with gλµ = diag(1,−1,−1,−1), is fully specified by the measured electron kinematical vari-

ables. All the information on the internal structure of the target is contained in the response

tensor

Wλµ = ⟨0|Jλ|f⟩⟨f |Jµ|0⟩δ(4)(p0 + q − pf ) , (6)

the definition of which involves the initial and final nuclear states |0⟩ and |f⟩, carrying

four-momenta p0 and pf , as well as the nuclear current operator,

Jµ =
A∑
i=1

jµi +
A∑

j>i=1

jµij . (7)

In the above equation, jµi is the current describing the electromagnetic interaction of a single

nucleon, while the operator jµij takes into account processes involving two nucleons, such as

those associated with meson-exchange currents (MEC) [32].

2.1. Plane Wave Impulse Approximation

The Plane Wave Impulse Approximation (PWIA) is based on the assumptions that i) as

the space resolution of the electron beam is ∼ 1/|q|, at large momentum transfer scattering

off a nuclear target reduces to the incoherent sum of elementary scattering processes involv-

ing individual bound nucleons (see Fig. 1) and ii) final state interactions between the hadrons

produced at the electron-nucleon vertex and the recoiling nucleus are negligibly small.

The above assumptions are implemented disregarding the contribution of the two-body

current in Eq. (7), i.e. setting

Jµ ≈
A∑
i=1

jµi , (8)

and writing the nuclear final state appearing in Eq. (6) in the factorized form

|f⟩ = eip·r1 η(1) Φf (2, . . . , A) , (9)
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FIG. 1. Schematic representation of the IA regime, in which the nuclear cross section is replaced

by the incoherent sum of cross sections describing scattering off individual nucleons, the recoiling

(A− 1)-nucleon system acting as a spectator.

where η(1) describes the spin of the knocked out nucleon, labeled by the index 1, while

Φf (2, . . . , A) is the wave function associated with the recoiling nucleus.

Within the PWIA scheme, the (e, e′p) cross section reduces to the simple form

dσA

dEe′dΩe′dEpdΩp

= KσepP (pm, Em) , (10)

with pm = |pm|. The missing momentum, pm, which in the PWIA scheme can be identified

with the initial momentum of the struck nucleon, is given by

pm = p− q , (11)

whereas the missing energy Em, yielding its removal energy, is defined through

ω +MA =
√

(MA −m+ Em)2 + |pm|2 + Ep , (12)

m and MA being the proton and target masses, respectively. Note that, in the limit of

low missing momentum, |pm|2/(MA −m+ Em)
2 → 0, the expression of the missing energy

reduces to the simple form

Em = ω − Tp , (13)

where Tp = Ep −m is the kinetic energy of the outgoing nucleon.

The probability distribution of finding a nucleon with momentum pm and removal energy

Em in the target ground state is described by the spectral function, defined as

P (pm, Em) =
∑
f

∣∣∣∣∫ d3r1 eipm·r1 Ψ(r1 . . . rA)
†Φf (r2 . . . rA)

∣∣∣∣2 δ(Em + E0 − Ef ) , (14)
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where E0 is the target ground state energy and the sum includes all states of the recoiling

nucleus, the energy of which is denoted Ef .

The kinematical region corresponding to low missing momentum and energy, where shell

model dynamics dominates, has been extensively studied by coincidence (e, e′p) experiments

(for a review, see, e.g., Ref.[33]). The spectral function extracted from the data is usually

written in the form

PMF (pm, Em) =
∑
α

Zα |ξα(pm)|2Fα(Em − Eα) , (15)

where the sum is extended to all occupied states belonging to the Fermi sea. Comparison

to Eq. (14) shows that
√
Zα ξα(pm) is the Fourier transform of the overlap function

ξα(r1) =

∫
d3x Ψ(r1 . . . rA)

†Φα(r2 . . . rA) , (16)

where Φα denotes the wave function of the (A− 1)-nucleon system with a hole in the state

α. The spectroscopic factors Zα < 1 and the functions Fα(Em −Eα), describing the energy

width of the state of the outgoing nucleon, account for the effects of residual interactions

not included in the mean field picture. In the absence of these interactions, the overlap

of Eq. (16) can be identified with the shell model wave function of the state α, ϕα, while

Zα → 1, and Fα(Em − Eα) → δ(Em − Eα).

In addition to the contribution of Eq. (15), corresponding to processes in which the resid-

ual nucleus is left in a bound state, the spectral function includes contributions associated

with final states in which one, or more, spectator nucleons are excited to the continuum.

These contributions, the occurrence of which is a clear manifestation of nucleon-nucleon

correlations in the initial state, have been computed for uniform nuclear matter, in a broad

range of densities, using Correlated Basis Function (CBF) perturbation theory [13]. Within

the Local Density Approximation (LDA), the nuclear matter results can be used to obtain

the correlation contribution to the spectral function of a finite nucleus of mass number A

from

Pcorr(pm, Em) =

∫
d3r ρA(r)P

NM
corr (pm, Em; ρ = ρA(r)) , (17)

where ρA(r) is the nuclear density distribution and PNM
corr (pmEm; ρ) is the correlation part of

the spectral function of uniform nuclear matter at density ρ.
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The full LDA spectral function is given by the sum

P (pm, Em) = PMF (pm, Em) + Pcorr(pm, Em) . (18)

The tenet underlying the LDA approach is that the correlation structure of the nuclear

ground state, being mainly driven by short-range dynamics, is largely unaffected by surface

and shell effects. This assumption is strongly supported by the predictions of a number of

theoretical calculations of the nucleon momentum distribution

n(pm) =

∫
dE P (pm, Em) , (19)

showing that for A ≥4 the quantity n(k)/A becomes nearly independent of A at large

momentum, typically pm ≳ 300 MeV (see, e.g., Ref. [34]).

2.2. Final State Interactions

While the PWIA description provides a clear understanding of the mechanism driving

the (e, e′p) reaction, corrections arising from Final State Interactions (FSI) between the

outgoing nucleon and the residual nucleus are known to be in general not negligible, and

must be carefully taken into account.

Within the Distorted Wave Impulse Approximation (DWIA), widely and successfully

employed to analyze the large data set of (e, e′p) cross sections, the plane wave describing

the motion of the outgoing nucleon is replaced by a scattering wave function χp which, in

principle, is an eigenfunction of the nonlocal Feshbach hamiltonianH [23]. In the presence of

FSI, the initial momentum of the hit nucleon, pi, cannot be trivially reconstructed through

identification with the measured missing momentum.

The problem of obtaining χp can be greatly simplified by approximating H with a phe-

nomenological optical potential, describing the interactions with the mean field of the resid-

ual nucleus. The optical potentials, determined fitting the available proton-nucleus scatter-

ing data, typically include complex central and spin-orbit components, as well as a Coulomb

term.

Within the DWIA scheme, the nuclear cross section can no longer be written in the

simple form of Eq. (10). However, neglecting the effect of the spin-orbit potential, one can

still recover a factorized expression in terms of the distorted spectral function [compare to
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Eq.(15)]

PD
MF (pm,p, Em) =

∑
α

Zα|ξDα (pm,p)|2Fα(Em − Eα) , (20)

with √
Zα ξDα (pm,p) =

∫
d3pi χ

⋆
p(pi + q)ξ(pi) , (21)

The accuracy of the factorization scheme, which proves to be most useful for the extraction

of the spectral function from the data, can be quantitatively tested comparing the resulting

cross section with that obtained from a direct many-body calculation of the relevant nuclear

transition matrix elements.

The large body of existing work on (e, e′p) data suggests that the effects of FSI can be

strongly reduced measuring the cross section in kinematical conditions such that p ∥ q. For

|p| > |q (|p| < |q) , implying in turn pm > 0 (pm < 0), this setup is referred to as parallel

(antiparallel) kinematics [35].

In parallel kinematics, the distorted momentum distribution at fixed |p|, corresponding

to fixed energy of the detected proton, becomes a function of missing momentum only

ND
α (pm) = Zα |ξD(pm)|2 , (22)

and the effects FSI can be easily identified. The real part of the optical potential brings

about a shift in missing momentum, while inclusion of the the imaginary part leads to a

significant reduction of the PWIA result, typically by a factor ∼ 0.7.

The treatment of FSI outlined in the is Section, developed by the Pavia Group, has

been extensively tested, and employed to extract nuclear spectral functions from the (e, e′p)

cross sections measured at Saclay and NIKHEF. It has been recently applied to neutrino-

argon interactions, in a study of the inclusive cross section measured by the ArgoNeuT

Collaboration[36].

In addition to hadronic FSI, in a nucleus as heavy as argon the distortion of the electron

wave functions arising from interactions with the Coulomb field of the nucleus are also

expected to be non negligible. Their effect, that can be taken into account through an

expansion in powers of Zα, has been analysed in Ref. [37]. The results of this study indicate

that in the case of 40Ca the simple prescription based on the use of an effective momentum

transfer provides remarkably accurate results.
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3. RELEVANT KINEMATICAL DOMAIN

We plan to study the (e, e′p) cross sections in the kinematical region in which single

nucleon knock out of a nucleon occupying a shell model orbit is the dominant reaction

mechanism. The relevant missing energy domain is illustrated in Table 1, listing the sepa-

ration energies of the proton and neutron shell model states belonging to the Fermi sea of

40
18Ar [15]. For comparison, the corresponding quantities for 40

20Ca ground state are reported

in the same table.

protons neutrons

40
20Ca

40
18Ar

40
20Ca

40
18Ar

1s1/2 57.38 52 66.12 62

1p3/2 36.52 32 43.80 40

1p1/2 31.62 28 39.12 35

1d5/2 14.95 11 22.48 18

2s1/2 10.67 8 17.53 13.15

1d3/2 8.88 6 15.79 11.45

1f7/2 5.56

TABLE 1. Separation energy of the proton and neutron shell model orbits relevant to the 40
20Ca

and 40
18Ar ground states (adapted from Ref. [15]).

Figure 2 shows the energy distribution

f(E) = 4π

∫
dk k2P (k,E) (23)

obtained from the model proton spectral function of 40
20Ca discussed in Ref. [15]. The spec-

troscopic lines corresponding to the valence orbitals are clearly visible, as are the bumps

associated with more deeply bound states. Note, however, that the experimental missing

energy resolution is expected to be better that that illustrated in Fig. 2.

The results of Table 1 and Fig. 2 suggest that the investigation of the mean

field contribution to the Argon spectral function will require a scan of the missing

energy domain extending from Em ∼ 8 MeV to Em ∼ 60 MeV, a Em range that can

easily be achieved in (e,e’p) experiments with the Hall A HRS spectrometers.
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FIG. 2. Proton removal energy distribution in the 40
20Ca ground state, obtained from Eq.(23) using

the model spectral function of Ref. [15]. Note that the experimental missing energy resolution is

expected to be better than shown in this Figure.

In the 40
18Ar ground state, protons occupy the 1s1/2, 2s1/2, 1p1/2, 1p3/2, 1d3/2 and 1d5/2

orbits. The corresponding momentum distributions are defined as

nα(k) = |ϕ̂α(k)|2 , (24)

where α ≡ (n, ℓ, j) denotes the set of quantum numbers specifying the shell model states

and ϕ̂α is the Fourier transform of the corresponding radial wave function. The momentum

distributions of the shell model orbits occupied by protons in the 40
20Ca ground state are

illustrated in Fig. 3. Note that the nα(k) are normalized according to∫
d3k

(2π)3
nα(k) = Nα , (25)

where Nα = 2j + 1 being the number of protons in the state α.

The numerical results have been obtained through numerical solution of the Scrödinger

equation with the Woods-Saxon potential reported in Ref. [18] and the parameter set cor-

responding to 40
20Ca.

Figure 3 shows that the missing momentum range relevant to the proposed

study extends to pm ∼ 350 MeV.
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FIG. 3. Momentum distributions of the shell model orbits occupied by protons in the 40
20Ca ground

state. The results have been obtained using the Woods-Saxon potential reported in Ref. [18].
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4. KINEMATICS AND EXPERIMENTAL RATES

In the past, several A(e, e′p) experiments have been very successfully carried out in Hall

A, using the HRS spectrometers. Measuring coincidence cross sections to obtain information

on nuclear structure and dynamics was in fact one of the primary goals of the early Physics

program at CEBAF (see, e.g. Ref.[38]). A list of past Hall A experiments can be found in

Table 2.

TABLE 2. Past A(e, e′p) experiments in Hall A

E89-003 Study of the Quasielastic (e, e′p) reaction in 16O at High Recoil Momentum

E89-044 Selected Studies of the 3He and 4He Nuclei through . . .

E97-111 Systematic Probe of Short-Range Correlations via the Reaction 4He(e, e′p)3H

E00-102 Testing the limits of the Single Particle Model in 16O(e,e’p)

E03-104 Probing the Limits of the Standard Model of Nuclear Physics with the 4He(e,e’p)3H Reaction

E04-004 In-Plane Separations and High Momentum Structure in d(e,e’p)n

E06-007 Impulse Approximation limitations to the (e,e’p) on 208Pb, . . .

Throughout the experiments listed in Table 2 the knowledge on the technical parameters

of the spectrometers has been continually improved, and the MC simulation packages that

are now available have been refined and improved exploiting the experience accumulated

over the years.

The proposed measurement of the reaction Ar(e, e′p) will make use of the following key

elements:

• the techniques that have been developed, and the lessons learned from the past exper-

iments;

• the Hall A high resolution spectrometers - HRSs;

• the long experience with cryogenic high pressure targets in both Hall A and Hall C.

The cross sections, the count rate calculations, and the simulations reported

in this proposal were estimated using a beam current of 100µA on a 10 Atm,

17



15 cm long Argon target running at a temperature of 130 K. The target density

will be of of 560 mg cm−2. These setting parameters will be used with a target

luminosity of 5.5×1036 cm−2 sec−1.

The MCEEP software package was used to simulate the experiment, with the following

assumptions for each of the HRS spectrometers:

• dp

p
: 3.5%

• ϕ : ± 20 mr

• θ : ± 40 mr.

The above assumptions are nominally used for cross section measurements with the HRS in

Hall A.

We regard these settings and the experimental simulation as solid, since they have already

been proved to work excellently in the past. The 16O(e,e’p) experiment E89-003, which ran

at a beam energy of 2.4 GeV and HRS settings very similar to those proposed herein,

reached an experimentally demonstrated Em resolution of 0.9 MeV FWHM (i.e. sigma of

0.38 MeV) [39]. The data collected over the range of Em covered by the HRS are shown

in Fig. 4. The results of the E89-003 experiment have been published in Physical Review

Letters as two separate articles [39, 40].

4.1. Experimental Setup

Beam We do not require beam polarization. The predicted count rates are such that

the beam current can be less than 100 µA, although we have used a conservative estimate.

The standard Hall A beam position and beam current monitors are more than adequate for

our needs. The beam must be raftered over 2×2 mm2 on the cryogenic targets.

Target The parameters for the proposed 15 cm1 cryogenic argon target are given in

Table 3. The relevant studies of computational fluid dynamics have been carried by Dr. S.

Covrig [41]. The results indicate that with a beam current of 100 µA the average density loss

will be just 3.9%. After consulting with the JLAB target group, we have also considered the

1 We are looking into the possibility of using a slightly longer target (20 cm), in order to push the end cap

further out of the acceptance of the HSRs.
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FIG. 4. The E89-003 ran at a beam energy of 2.4 GeV and HRS settings very close to those

proposed herein. The EM resolution of 0.9 MeV FWHM was achieved and both bound state and

continuum data was published in Physical Review Letters [39, 40].

possibility of reducing the pressure in the target cell in exchange for a thinner cell windows,

the latter being a possible source of background.

Length Diameter Pressure Temperature Density Rad. Length End Wall Caps

15 cm 2π cm 10 ATM 130 K 560 mg/cm2 2.9% 0.0254 cm

TABLE 3. Parameters of proposed Argon cryogenic target

4.2. Background and ancillary measurements

We require additional beam time for the end cap background contribution, spectrometer

pointing, carbon and hydrogen elastic measurements which require the following targets:
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• LH2 cell of the same length as the Ar target - 15 cm (density 18.43 mg/cm2);

• C foils and multi-foils for y-target calibration 10 mils - (density 60 mg/cm2);

• Al dummy target (two foils Al with matched radiation length to filled Ar) (200

mg/cm2) - current will be in this case only 25 µA.

The beam time for the background measurements is comprised in the 9 days

of requested beam time, and it has been included in Table 8.

Carbon pointing (single foil carbon runs) and Al dummy runs will be taken at each

setting. We will match the radiation length of the filled target with the Al target (i.e. the

Al in the dummy is thicker then the cells). The data taking in this case will be very fast,

as it was in the past [43]. A preferred method will be fitting the shape of the Al data

and subtracting the function with respect to just doing a data subtraction. In any case,

we typically cut in y-target due to the very nice y-target resolution of the HRS (∼1 mm

90 degrees) so this typically ends up being a small correction.

4.3. Proposed Kinematics

In the parallel kinematics of this experiment the electron beam energy, the final electron

energy (and therefore the energy transfer) and the knocked out proton momentum are held

fixed. In order to sample different missing momentum (pm) the electron scattering angle is

varied from approximately 25 degrees to 13 degrees, as shown in detail in Table 4. Note that,

on account of the spectrometer acceptances, the kinematical setups of Table 4, corresponding

to Em ≈ 50 MeV, automatically cover all the relevant missing energy range.

We are also requesting to take two settings in anti-parallel kinematics, shown

in Table 5 as a cross-check of the spectral functions, or alternatively the momentum distri-

butions, n(k), extracted from the data. Being quantities describing intrinsic properties of

he target, they should be independent of kinematics.

Measuring the momentum distribution twice will also allow us to gauge the accuracy of

the treatment of FSI within the approach of Ref. [23].
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Parallel Kinematics, Luminosity = 5.45× 1036atoms/cm2/sec

kinematics Ee Ee′ θe Pp θp |q| pm xbj dσeA Coin. Rate

MeV MeV deg MeV/c deg MeV/c MeV/c mb sr−2MeV−2 Hz

kin01 2200 1717 25.3 1000 -48.6 980 20 0.80 0.173× 10−6 0.60

kin02 2200 1717 23.9 1000 -47.8 940 60 0.72 0.191× 10−6 0.67

kin03 2200 1717 22.5 1000 -47.0 900 100 0.64 0.214× 10−6 0.75

kin04 2200 1717 21.1 1000 -45.9 860 140 0.56 0.245× 10−6 0.88

kin05 2200 1717 19.6 1000 -44.7 820 180 0.49 0.238× 10−6 0.85

kin06 2200 1717 18.1 1000 -43.2 780 220 0.41 0.181× 10−6 0.64

kin07 2200 1717 16.6 1000 -41.4 740 260 0.35 0.107× 10−6 0.39

kin08 2200 1717 15.0 1000 -39.3 700 300 0.28 0.516× 10−7 0.18

kin09 2200 1717 13.3 1000 -36.7 660 340 0.22 0.250× 10−7 0.09

kin10 2200 1717 11.5a 1000 -33.4 620 380 0.17 0.171× 10−7 0.06

a For this one extreme kinematics, the electron arm will not be centered as it is limited to 12.5 degrees,

never the less, the indicated angle is within the acceptance.

TABLE 4. Kinematical variables, PWIA 40Ca(e, e′p) cross section and coincidence rates in parallel

kinematics.

Anti-parallel Kinematics, Luminosity = 5.45× 1036atoms/cm2/sec

kinematics Ee Ee′ θe Pp θp |q| pm xbj dσeA Coin. Rate

MeV MeV deg MeV/c deg MeV/c MeV/c mb sr−2MeV−2 Hz

kin11 2200 1717 29.8 1000 -50.2 1110 -110 1.1 0.364× 10−7 0.13

kin12 2200 1717 34.4 1000 -51.1 1247 -247 1.5 0.211× 10−8 0.01

TABLE 5. Kinematical variables, PWIA 40Ca(e, e′p) cross section and coincidence rate in anti-

parallel kinematics.
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4.4. Coincidence rates

Tables 4 and 5 provide a detailed account of the kinematic setups that we are proposing,

along with the coincidence rates obtained from the six-fold PWIA cross-sections computed

using the Calcium spectral function of Ref.[15] and the CC1 electron-nucleon cross section

of Ref. [42].

4.5. Singles rates

The single-arm background rates, for both the parallel and antiparalle kinematics, are

summarized in Tables 6 and 7.

The (e, e′) rate were calculated with the QFS computer code of Lightbody and O’Connell [44],

while the (e, p), (e, π+), and (e, π−) rates were obtained using the EPC code, also from

Ref. [44]. The rate calculations assumed a luminosity of 5.5× 1036 cm2 s −1.

As demonstrated by many past experiment, our predicted rates have never been a problem

for the Hall A apparatus, and can be easily achievable.

4.6. Systematic and Statistical Uncertainties

We have estimated a statistical uncertainty for our measurements of 3%, and we assumed

a systematic uncertainties of 3%.

In order to achieve that we will require luminosity monitoring and elastic cross section

measurements at appropriate scattering angles to test the counting rates as a function of

the beam current. This was done in the past by other experiments and will guarantee

systematic uncertainties of the order of 3%, that will be added in quadrature to the statistical

uncertainties.
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Luminosity = 5.45× 1036atoms/cm2/sec

kinematics dσee′ Single Rate dσeπ− Single Rate

(e,e’) (e,π−)

mb sr−1 MeV−1 Hz mb sr−1 MeV−1 Hz

Parallel Kinematics

kin01 0.346× 10−5 94.3 0.400× 10−4 1090.0

kin02 0.516× 10−5 140.6 0.467× 10−4 1272.6

kin03 0.741× 10−5 201.9 0.558× 10−4 1520.6

kin04 0.106× 10−4 288.9 0.684× 10−4 1863.9

kin05 0.156× 10−4 425.1 0.864× 10−4 2354.4

kin06 0.246× 10−4 670.4 0.113× 10−3 3079.3

kin07 0.404× 10−4 1100.9 0.154× 10−3 4196.5

kin08 0.677× 10−4 1844.9 0.221× 10−3 6022.3

kin09 0.115× 10−3 3133.8 0.337× 10−3 9183.3

kin10 0.201× 10−3 5477.3 0.562× 10−3 15324.5

Anti-parallel Kinematics

kin11 0.670× 10−6 18.4 0.272× 10−4 741.2

kin12 0.986× 10−7 2.7 0.350× 10−4 953.8

TABLE 6. (e, e′) and (e, π−) single electron-arm rates along with accidental rates.
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Luminosity = 5.45× 1036atoms/cm2/sec

kinematics dσep Single Rate dσeπ+ Single Rate

(e,p) (e,π+)

mb sr−1 MeV−1 Hz mb sr−1 MeV−1 Hz

Parallel Kinematics

kin01 0.137× 10−3 3733.2 0.378× 10−4 1030.0

kin02 0.158× 10−3 4305.5 0.443× 10−4 1207.2

kin03 0.183× 10−3 4986.8 0.531× 10−4 1447.0

kin04 0.217× 10−3 5913.3 0.654× 10−4 1782.2

kin05 0.260× 10−3 7085.0 0.828× 10−4 2256.3

kin06 0.318× 10−3 8665.5 0.109× 10−3 2970.3

kin07 0.397× 10−3 10818.3 0.148× 10−3 4033.0

kin08 0.509× 10−3 13870.3 0.213× 10−3 5804.3

kin09 0.675× 10−3 18393.8 0.327× 10−3 8910.8

kin10 0.931× 10−3 25369.8 0.546× 10−3 14878.5

Anti-parallel Kinematics

kin11 0.948× 10−4 2583.3 0.255× 10−4 694.9

kin12 0.121× 10−3 3297.3 0.330× 10−4 899.2

TABLE 7. (e, π+) and (e, p) single proton-arm rates.
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5. SUMMARY AND BEAM TIME REQUEST

5.1. Summary

The spectral function, trivially related to the two-point Green’s function, is a funda-

mental quantity describing the dynamics of interacting many-body systems. As such, its

measurement through the analysis of the nuclear (e, e′p) cross section is certainly vaulable

in its own right.

We propose to carry out an experiment aimed at obtaining the argon spectral function.

The results of this measurement, besides yielding previously unavailable information on

nuclear structure and dynamics, will provide the input needed to improve the simulation

of neutrino interactions in liquid argon detectors, thus reducing the systematic uncertainty

associated with the oscillation analysis of experiments such as LBNE.

The proposed measurement is mainly focused on the energy and momentum region in

which shell model dynamics is known to dominate. The understanding of this region will

allow for accurate prediction of the CC QE cross section in the single-nucleon knock out

sector, which is known to be of paramount importance. However, it is important to keep in

mind the that spectral function provides a description of the target ground state. Therefore,

its knowledge is needed for the description of all interactions involving a single nucleon,

independent of the final state.

Theoretical studies and extensive comparison with electron scattering data [13, 14, 45]

suggest that highly realistic models of the full spectral functions, suitable to describe two-

nucleon emission processes arising from short range correlations in the initial state can be

obtained combining the measured mean field spectral function with theoretical calculations

of the continuum component within the LDA scheme [13].

The impact of the nuclear spectral function on neutrino oscillation parameters has been

recently studied in Ref.[46]. The results of this exploratory analysis, carried out using the

GLoBES sensitivity framework, clearly show that the description of the nuclear ground state

has a non-negligible influence on the determination of the atmospheric oscillation parameters

in a typical νµ disappearance experiment.
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5.2. Beam Time Request

To perform this experiment and make the necessary systematic measurements

we request 9 days of beam time at 2.2 GeV as shown in Table 8.

Time is also included to take carbon pointing data and multi-foil carbon target data

to allow a calibration of the pointing of the spectrometers and y-target calibrations. The

carbon data will also be useful for obtaining an independent measurement of the absolute

missing mass calibration. The Al dummy data will allow us to subtract the end caps of the

target cell from the data.

Luminosity = 5.45× 1036atoms/cm2/sec

kinematics Beam Time

day(s)

Parallel Kinematics

kin1 0.25

kin2 0.25

kin3 0.25

kin4 0.25

kin5 0.25

kin6 0.25

kin7 0.25

kin8 0.25

kin9 0.50

kin10 1.00

Anti-parallel Kinematics

kin11 0.50

kin12 3.00

Calibration (Beam energy, current, etc.)

cal. 1.0

TABLE 8. Required beam time in parallel and antiparallel kinematics, and calibration.
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