Difference between revisions of "Solid Tracking"
From Hall A Wiki
Line 50: | Line 50: | ||
=Xin's comment on 2011/09/21= | =Xin's comment on 2011/09/21= | ||
http://hallaweb.jlab.org/12GeV/SoLID/download/tracking/for_Nilanga.pdf | http://hallaweb.jlab.org/12GeV/SoLID/download/tracking/for_Nilanga.pdf | ||
+ | |||
+ | =GEM module's geometry and material= | ||
+ | |||
+ | The GEM module construction is borrowed from SBS mc code as described below. | ||
+ | |||
+ | <pre> | ||
+ | * Describe the single GEM Chamber module (similar to COMPASS) | ||
+ | * see: "Construction Of GEM Detectors for the COMPASS experiment", CERN Tech Note TA1/00-03 | ||
+ | * | ||
+ | * HoneyComb | ||
+ | * 0 NEMA G10 120 um | ||
+ | * 1 NOMEX 3 um | ||
+ | * 2 NEMA G10 120 um | ||
+ | * Drift Cathode | ||
+ | * 3 Kapton 50 um | ||
+ | * 4 Copper 5 um | ||
+ | * 5 Air 3 mm | ||
+ | * GEM0 | ||
+ | * 6 Copper 5 um | ||
+ | * 7 Kapton 50 um | ||
+ | * 8 Copper 5 um | ||
+ | * 9 Air 2 mm | ||
+ | * GEM1 | ||
+ | * 10 Copper 5 um | ||
+ | * 11 Kapton 50 um | ||
+ | * 12 Copper 5 um | ||
+ | * 13 Air 2 mm | ||
+ | * GEM2 | ||
+ | * 14 Copper 5 um | ||
+ | * 15 Kapton 50 um | ||
+ | * 16 Copper 5 um | ||
+ | * 17 Air 2 mm | ||
+ | * Readout Board | ||
+ | * 18 Copper 10 um | ||
+ | * 19 Kapton 50 um | ||
+ | * 20 G10 120 um + 60 um (assume 60 um glue as G10) # not implmented yet | ||
+ | * Honeycomb | ||
+ | * 21 NEMA G10 120 um | ||
+ | * 22 NOMEX 3 um | ||
+ | * 23 NEMA G10 120 um | ||
+ | </pre> | ||
+ | |||
+ | =GEM response= | ||
+ | |||
+ | For background study, I use FLUX bank which records every single hit, | ||
+ | |||
+ | The FLUX ID is like 1x000yy where x of 1-6 or 1-4 is for the GEM plane number, yy of 01-23 is for GEM module layer number. |
Revision as of 11:37, 13 October 2011
Contents
Things to do and learn from tracking
- Need to define input and output data structures for tracking code
- Output from tracking should be standardized so we can easily compare
- Algorithms to try
- Xin's progressive tracking
- 3D (present)
- 2D (track x,y separately and combine)
- Tree search
- Mindy's code
- Others
- Xin's progressive tracking
- Condiderations
- With and without magnetic fields
- With field, is there p dependence
- GEM clustering dependence
- Calorimeter and other detector information
- Potential improvements
- Dead areas in GEMs
- Benchmarks
- Tracking rate
- Tracking efficiency (#of real tracks reconstructed/# of real tracks)
- Effect of noise in fits (hits replaced with noise)
- Pure noise tracks (ghost tracks)
- Multi-track reconstruction efficiency
- Helicity dependence of reconstruction (efficiency *and* quality)
- Noise correlation between planes effects
- Benchmark conditions to map
- Background rates 0 - x5
- Background rate derivatives (for helicity dependence)
- Uncorrelated - correlated backgrounds
- Readout strip configuration: x/y vs. r/phi
Tracking Roadmap
- Input and output
- Develop GEMC banks output standards
- Create implement GEM hit <-> banks interface for digitization code
- Create library for loading banks output, clustering for tracking code
- For library, interface with Hall A analyzer, ROOT output
- Can be done in parallel:
- Implement other algorithms
- Evaluate benchmarks
Xin's comment on 2011/09/21
http://hallaweb.jlab.org/12GeV/SoLID/download/tracking/for_Nilanga.pdf
GEM module's geometry and material
The GEM module construction is borrowed from SBS mc code as described below.
* Describe the single GEM Chamber module (similar to COMPASS) * see: "Construction Of GEM Detectors for the COMPASS experiment", CERN Tech Note TA1/00-03 * * HoneyComb * 0 NEMA G10 120 um * 1 NOMEX 3 um * 2 NEMA G10 120 um * Drift Cathode * 3 Kapton 50 um * 4 Copper 5 um * 5 Air 3 mm * GEM0 * 6 Copper 5 um * 7 Kapton 50 um * 8 Copper 5 um * 9 Air 2 mm * GEM1 * 10 Copper 5 um * 11 Kapton 50 um * 12 Copper 5 um * 13 Air 2 mm * GEM2 * 14 Copper 5 um * 15 Kapton 50 um * 16 Copper 5 um * 17 Air 2 mm * Readout Board * 18 Copper 10 um * 19 Kapton 50 um * 20 G10 120 um + 60 um (assume 60 um glue as G10) # not implmented yet * Honeycomb * 21 NEMA G10 120 um * 22 NOMEX 3 um * 23 NEMA G10 120 um
GEM response
For background study, I use FLUX bank which records every single hit,
The FLUX ID is like 1x000yy where x of 1-6 or 1-4 is for the GEM plane number, yy of 01-23 is for GEM module layer number.